OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1345–1348

Plasmonic extinction of gated graphene nanoribbon array analyzed by a scaled uniform Fermi level

Xiang-Tian Kong, Xiaoxia Yang, Zhenjun Li, Qing Dai, and Xiaohui Qiu  »View Author Affiliations

Optics Letters, Vol. 39, Issue 6, pp. 1345-1348 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A uniform Fermi level profile is typically assumed in the analysis of a gated graphene nanoribbon, whose Fermi level is actually nonuniform in the experimental measurements. Here, we show that the uniform Fermi level has to be downshifted when it is used to analyze a backgated graphene nanoribbon array (GNRA). The plasmonic extinction behaviors of the GNRAs are perfectly preserved by assuming properly scaled uniform Fermi levels. The scaling factor is independent of the average value of the actual Fermi level profile, but it is a function of the ratio of the nanoribbon width to the distance of the nanoribbons from the backgate. This study facilitates the data postprocessing in the experiments, and may be helpful for analyzing the electron behaviors in GNRAs.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:

Original Manuscript: October 31, 2013
Revised Manuscript: January 22, 2014
Manuscript Accepted: January 26, 2014
Published: March 4, 2014

Xiang-Tian Kong, Xiaoxia Yang, Zhenjun Li, Qing Dai, and Xiaohui Qiu, "Plasmonic extinction of gated graphene nanoribbon array analyzed by a scaled uniform Fermi level," Opt. Lett. 39, 1345-1348 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. G. de Abajo, Science 339, 917 (2013). [CrossRef]
  2. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, Nano Lett. 11, 3370 (2011).
  3. M. Jablan, H. Buljan, and M. Soljacic, Phys. Rev. B 80, 245435 (2009).
  4. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, ACS Nano 6, 431 (2012). [CrossRef]
  5. J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, Phys. Rev. B 87, 241410 (2013).
  6. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Nat. Photonics 7, 394 (2013). [CrossRef]
  7. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Nat. Nanotechnol. 6, 630 (2011). [CrossRef]
  8. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, Nano Lett. 13, 2541 (2013).
  9. A. Vakil and N. Engheta, Science 332, 1291 (2011). [CrossRef]
  10. P.-Y. Chen and A. Alu, ACS Nano 5, 5855 (2011). [CrossRef]
  11. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, Nano Lett. 13, 3698 (2013).
  12. V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, Phys. Rev. B 81, 073404 (2010).
  13. S. He, X. Zhang, and Y. He, Opt. Express 21, 30664 (2013). [CrossRef]
  14. X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, Opt. Express 21, 28438 (2013). [CrossRef]
  15. J. T. Kim, Y.-J. Yu, H. Choi, and C.-G. Choi, Opt. Express 22, 803 (2014). [CrossRef]
  16. J. Tao, X. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, Opt. Lett. 39, 271 (2014). [CrossRef]
  17. P. G. Silvestrov and K. B. Efetov, Phys. Rev. B 77, 155436 (2008).
  18. F. T. Vasko and I. V. Zozoulenko, Appl. Phys. Lett. 97, 092115 (2010). [CrossRef]
  19. S. Thongrattanasiri, I. Silveiro, and F. J. G. de Abajo, Appl. Phys. Lett. 100, 201105 (2012). [CrossRef]
  20. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, J. Phys. Condens. Matter 19, 026222 (2007). [CrossRef]
  21. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited