OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1481–1484

Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength

Thomas Lutz, Piotr Kolenderski, and Thomas Jennewein  »View Author Affiliations

Optics Letters, Vol. 39, Issue 6, pp. 1481-1484 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectrally correlated photon pairs can be used to improve the performance of long-range fiber-based quantum communication protocols. We present a source based on spontaneous parametric downconversion, which allows one to control spectral correlations within the entangled photon pair without spectral filtering by changing the pump-pulse duration or the characteristics of the coupled spatial modes. The spectral correlations and polarization entanglement are characterized. We find that the generated photon pairs can feature both positive spectral correlations, decorrelation, or negative correlations at the same time as polarization entanglement with a high fidelity of 0.97 (no background subtraction) with the expected Bell state.

© 2014 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.4180) Quantum optics : Multiphoton processes
(300.6190) Spectroscopy : Spectrometers
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: November 28, 2013
Revised Manuscript: February 7, 2014
Manuscript Accepted: February 7, 2014
Published: March 11, 2014

Thomas Lutz, Piotr Kolenderski, and Thomas Jennewein, "Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength," Opt. Lett. 39, 1481-1484 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, Laser Phys. 15, 146 (2005).
  2. A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, Phys. Rev. A 75, 023810 (2007). [CrossRef]
  3. C. I. Osorio, A. Valencia, and J. P. Torres, New J. Phys. 10, 113012 (2008). [CrossRef]
  4. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, Phys. Rev. Lett. 100, 133601 (2008). [CrossRef]
  5. P. Kolenderski, W. Wasilewski, and K. Banaszek, Phys. Rev. A 80, 013811 (2009). [CrossRef]
  6. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, Phys. Rev. Lett. 106, 013603 (2011). [CrossRef]
  7. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, Phys. Rev. Lett. 105, 253601 (2010). [CrossRef]
  8. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, Opt. Express 19, 24434 (2011). [CrossRef]
  9. M. Hendrych, M. Micuda, and J. P. Torres, Opt. Lett. 32, 2339 (2007). [CrossRef]
  10. A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, Phys. Rev. Lett. 99, 243601 (2007). [CrossRef]
  11. R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, Opt. Express 21, 10659 (2013). [CrossRef]
  12. B. Dayan, A. Pe’Er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005). [CrossRef]
  13. B. Dayan, Phys. Rev. A 76, 043813 (2007). [CrossRef]
  14. J. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000). [CrossRef]
  15. C. Antonelli, M. Shtaif, and M. Brodsky, Phys. Rev. Lett. 106, 080404 (2011). [CrossRef]
  16. M. Brodsky, E. C. George, C. Antonelli, and M. Shtaif, Opt. Lett. 36, 43 (2011). [CrossRef]
  17. T. Lutz, “Entangled photon sources for ultra-long distance quantum entanglement distribution,” Master’s thesis (University of Waterloo, Ulm University, 2013).
  18. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. Wong, and F. X. Kärtner, Phys. Rev. Lett. 94, 083601 (2005). [CrossRef]
  19. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Phys. Rev. Lett. 101, 153602 (2008). [CrossRef]
  20. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, Opt. Express 21, 13975 (2013). [CrossRef]
  21. T. Lutz, P. Kolenderski, and T. Jennewein, Opt. Lett. 38, 697 (2013). [CrossRef]
  22. Y.-H. Kim and W. P. Grice, J. Mod. Opt. 49, 2309 (2002). [CrossRef]
  23. H. S. Poh, J. Lim, I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 80, 043815 (2009). [CrossRef]
  24. H. Huang and J. Eberly, J. Mod. Opt. 40, 915 (1993). [CrossRef]
  25. H. S. Poh, C. Y. Lum, I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 75, 043816 (2007). [CrossRef]
  26. A. Tosi, A. Della Frera, A. Bahgat Shehata, and C. Scarcella, Rev. Sci. Instrum. 83, 013104 (2012). [CrossRef]
  27. R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, Phys. Rev. A 66, 012303 (2002). [CrossRef]
  28. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 1st ed. (Cambridge University, 2000).
  29. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited