Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhanced radiative recombination and suppressed Auger process in semipolar and nonpolar InGaN/GaN quantum wells grown over GaN nanowires

Not Accessible

Your library or personal account may give you access

Abstract

The mechanism behind the improved light emission properties of semipolar and nonpolar InGaN/GaN multiple quantum wells (MQWs) conformally grown over n-GaN nanowires (NWs) was studied using variable-temperature photoluminescence and time-resolved photoluminescence (TRPL). A reduced internal polarization electric field was found to account for the observed enhancement in the radiative recombination rate and internal quantum efficiency of the MQWs on NWs. Additionally, the excitation-dependent TRPL results indicate a significantly depressed Auger recombination in MQWs grown on NWs that can be attributed to the feature of ultralow dislocation density of the MQWs grown over GaN nanostructures.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs

Friedhard Römer and Bernd Witzigmann
Opt. Express 22(S6) A1440-A1452 (2014)

Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers

Kwang Jae Lee, Sang-Jo Kim, Jae-Joon Kim, Kyungwook Hwang, Sung-Tae Kim, and Seong-Ju Park
Opt. Express 22(S4) A1164-A1173 (2014)

Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

Serdal Okur, Mohsen Nami, Ashwin K. Rishinaramangalam, Sang H. Oh, Steve P. DenBaars, Sheng Liu, Igal Brener, and Daniel F. Feezell
Opt. Express 25(3) 2178-2186 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved