OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1529–1532

On the robustness of phase locking in Kerr optical frequency combs

Aurélien Coillet and Yanne Chembo  »View Author Affiliations

Optics Letters, Vol. 39, Issue 6, pp. 1529-1532 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate the phase locking phenomena between the spectral components of Kerr optical frequency combs in the dynamical regime of Turing patterns. We show that these Turing patterns display a particularly strong and robust phase locking, originating from a cascade of phase locked triplets which asymptotically lead to a global phase locking between the modes. The local and global phase locking relationships defining the shape of the comb are analytically determined. Our analysis also shows that solitons display a much weaker phase locking that can be destroyed more easily than in the Turing pattern regime. Our results indicate that Turing patterns are generally the most suitable for applications requiring the highest stability. Experimental generation of such combs is also discussed in detail, and is in excellent agreement with the numerical simulations.

© 2014 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Nonlinear Optics

Original Manuscript: December 17, 2013
Revised Manuscript: January 30, 2014
Manuscript Accepted: January 30, 2014
Published: March 12, 2014

Aurélien Coillet and Yanne Chembo, "On the robustness of phase locking in Kerr optical frequency combs," Opt. Lett. 39, 1529-1532 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011). [CrossRef]
  2. P. Del’Haye, S. B. Papp, and S. A. Diddams, Phys. Rev. Lett. 109, 263901 (2012). [CrossRef]
  3. J. Li, H. Lee, T. Chen, and K. Vahala, Phys. Rev. Lett. 109, 233901 (2012). [CrossRef]
  4. A. B. Matsko and L. Maleki, Opt. Express 21, 28862 (2013). [CrossRef]
  5. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, Opt. Lett. 36, 2845 (2011). [CrossRef]
  6. Y. K. Chembo and C. R. Menyuk, Phys. Rev. A 87, 053852 (2013). [CrossRef]
  7. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, Opt. Lett. 38, 37 (2013). [CrossRef]
  8. I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv:1308.2542 (2013).
  9. C. Godey, I. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: case of normal dispersion,” arXiv:1308.2539 (2013).
  10. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004). [CrossRef]
  11. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, Phys. Rev. Lett. 101, 093902 (2008). [CrossRef]
  12. Y. K. Chembo, D. V. Strekalov, and N. Yu, Phys. Rev. Lett. 104, 103902 (2010). [CrossRef]
  13. Y. K. Chembo and N. Yu, Phys. Rev. A 82, 033801 (2010). [CrossRef]
  14. A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. K. Chembo, IEEE Photon. J. 5, 6100409 (2013). [CrossRef]
  15. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005). [CrossRef]
  16. T. Hansson, D. Modotto, and S. Wabnitz, Phys. Rev. A 88, 023819 (2013). [CrossRef]
  17. M. R. E. Lamont, Y. Okawachi, and A. L. Gaeta, Opt. Lett. 38, 3478 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited