OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1537–1540

Nonorthogonal polarizers: a polar analysis

Tiberiu Tudor  »View Author Affiliations

Optics Letters, Vol. 39, Issue 6, pp. 1537-1540 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analysis of the operators of some widespread nonorthogonal polarizers is performed on the basis of the polar factorization theorem, in pure operatorial (nonmatrix) Dirac algebraic language. The role of the unitary polar component as a converter of the two sets of singular eigenvectors of the operator, one in the other, is emphasized in each case; this role is maintained for the singular operators corresponding to these special nonorthogonal polarizers.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.5430) Physical optics : Polarization
(270.0270) Quantum optics : Quantum optics

ToC Category:
Physical Optics

Original Manuscript: December 29, 2013
Manuscript Accepted: January 17, 2014
Published: March 12, 2014

Tiberiu Tudor, "Nonorthogonal polarizers: a polar analysis," Opt. Lett. 39, 1537-1540 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Berry and S. Klein, J. Mod. Opt. 43, 165 (1996). [CrossRef]
  2. W. A. Shurcliff, Polarized Light (Harvard University, 1962).
  3. J. J. Gil, Eur. Phys. J. Appl. Phys. 40, 1 (2007). [CrossRef]
  4. T. Tudor, J. Opt. Soc. Am. A 20, 728 (2003). [CrossRef]
  5. S. Pancharatnam, Collected Works of S. Pancharatnam (Oxford University, 1975).
  6. S.-Y. Lu and R. A. Chipman, J. Opt. Soc. Am. A 11, 766 (1994). [CrossRef]
  7. M. V. Berry and M. R. Dennis, J. Opt. A 6, S24 (2004). [CrossRef]
  8. S. N. Savenkov and O. I. Sydoruk, J. Opt. Soc. Am. A 22, 1447 (2005). [CrossRef]
  9. S. N. Savenkov, O. I. Sydoruk, and R. S. Muttiah, Appl. Opt. 46, 6700 (2007). [CrossRef]
  10. O. Sydoruk and S. N. Savenkov, J. Opt. 12, 035702 (2010). [CrossRef]
  11. T. Tudor, J. Opt. Soc. Am. A 23, 1513 (2006). [CrossRef]
  12. C. Whitney, J. Opt. Soc. Am. 61, 1207 (1971). [CrossRef]
  13. J. J. Gil and E. Bernabeu, Optik 76, 67 (1987).
  14. Z.-F. Xing, J. Mod. Opt. 39, 461 (1992). [CrossRef]
  15. S.-Y. Lu and R. A. Chipman, J. Opt. Soc. Am. A 13, 1106 (1996). [CrossRef]
  16. J. Morio and F. Goudail, Opt. Lett. 29, 2234 (2004). [CrossRef]
  17. M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, J. Eur. Opt. Soc. Rapid Pub. 2, 07018 (2007). [CrossRef]
  18. J. J. Gil, I. San José, and R. Ossikovski, J. Opt. Soc. Am. A 30, 32 (2013). [CrossRef]
  19. J. J. Gil, J. Opt. Soc. Am. A 30, 701 (2013). [CrossRef]
  20. P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic, 1985).
  21. F. R. Gantmacher, Theory of Matrices (AMS Chelsea, 2000).
  22. D. A. B. Miller, Opt. Express 20, 23985 (2012). [CrossRef]
  23. O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, Opt. Express 17, 15623 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited