OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1589–1592

Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies

Yongzheng Wen, Wei Ma, Joe Bailey, Guy Matmon, Xiaomei Yu, and Gabriel Aeppli  »View Author Affiliations

Optics Letters, Vol. 39, Issue 6, pp. 1589-1592 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (598 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A planar broadband metamaterial absorber with high absorptivity working at terahertz frequencies was designed and fabricated in this work. Two nested back-to-back split-ring resonators (BSRRs) constitute a single resonator, which achieves three strong resonances, with two of them merged into a broadband peak. Cobalt silicide and parylene-C were innovatively applied as ground plane and dielectric spacer. The nested BSRR absorber experimentally realizes a bandwidth of 0.66 THz with the absorptivity above 0.8, and the highest absorptivity reaches 0.97. Taking the central frequency at 2.74 THz, the measured FWHM is 47% and the Q factor is 2.13.

© 2014 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(040.2235) Detectors : Far infrared or terahertz
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 21, 2014
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 13, 2014
Published: March 12, 2014

Yongzheng Wen, Wei Ma, Joe Bailey, Guy Matmon, Xiaomei Yu, and Gabriel Aeppli, "Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies," Opt. Lett. 39, 1589-1592 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006). [CrossRef]
  2. V. M. Shalaev, Nat. Photonics 1, 41 (2007). [CrossRef]
  3. S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, Phys. Rev. Lett. 95, 137404 (2005). [CrossRef]
  4. R. A. Shelby, Science 292, 77 (2001). [CrossRef]
  5. M. Tonouchi, Nat. Photonics 1, 97 (2007). [CrossRef]
  6. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]
  7. H. Tao, N. I. Landy, C. M. Bingham, Z. Xin, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008). [CrossRef]
  8. F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, Appl. Phys. Lett. 100, 203508 (2012). [CrossRef]
  9. F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, Opt. Express 20, 21025 (2012). [CrossRef]
  10. F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, Opt. Express 21, 13256 (2013). [CrossRef]
  11. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, Appl. Phys. Lett. 101, 101102 (2012). [CrossRef]
  12. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, Opt. Lett. 38, 1125 (2013). [CrossRef]
  13. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, Opt. Express 21, 9691 (2013). [CrossRef]
  14. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, Appl. Phys. Lett. 101, 154102 (2012). [CrossRef]
  15. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, Opt. Lett. 37, 154 (2012). [CrossRef]
  16. J. Sun, L. Liu, G. Dong, and J. Zhou, Opt. Express 19, 21155 (2011). [CrossRef]
  17. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett. 36, 3476 (2011). [CrossRef]
  18. Y. Yu. Qian, J. Yi, and H. Sailing, J. Opt. Soc. Am. B 27, 498 (2010). [CrossRef]
  19. D. Schurig, J. J. Mock, and D. R. Smith, Appl. Phys. Lett. 88, 041109 (2006). [CrossRef]
  20. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, Phys. Rev. B 78, 241103(R) (2008).
  21. Y. Lei, “Research on parylene-C filling in micro/nano gaps and nanoparticle crystal,” Ph.D. thesis (Peking University, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited