OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1613–1616

Surface plasmon polariton Wannier–Stark ladder

V. Kuzmiak, A. A. Maradudin, and E. R. Méndez  »View Author Affiliations

Optics Letters, Vol. 39, Issue 6, pp. 1613-1616 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of a surface plasmon polariton on a planar metal surface perturbed by N equally spaced rectangular grooves, each with the same width but with varying depths, is investigated by the finite-difference time-domain method. For a linear dependence of the depth of the nth groove on n, the transmissivity of the surface plasmon polariton and of the power radiated into the vacuum above the surface, as functions of its frequency, consist of N equally spaced dips and peaks, respectively. These are the signatures of the surface plasmon polariton analog of a Wannier–Stark ladder.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optics at Surfaces

Original Manuscript: October 15, 2013
Revised Manuscript: February 3, 2014
Manuscript Accepted: February 10, 2014
Published: March 13, 2014

V. Kuzmiak, A. A. Maradudin, and E. R. Méndez, "Surface plasmon polariton Wannier–Stark ladder," Opt. Lett. 39, 1613-1616 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. H. Wannier, Elements of Solid State Theory (Cambridge University, 1959), p. 190.
  2. F. Bloch, Z. Phys. 22, 555 (1928).
  3. E. E. Méndez, F. Agulló-Rueda, and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988). [CrossRef]
  4. S. Sapienza, P. Constantino, D. Wiersma, M. Chulinyan, C. J. Oton, and L. Pavesi, Phys. Rev. Lett. 91, 263902 (2003). [CrossRef]
  5. J. Feldman, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Shulze, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B 46, 7252 (1992). [CrossRef]
  6. K. Leo, K. Haring Bolivar, F. Brügemann, R. Schwedler, and K. Köhler, Solid State Commun. 84, 943 (1992). [CrossRef]
  7. S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996). [CrossRef]
  8. G. Monsivais, M. del Castillo-Mussot, and F. Claro, Phys. Rev. Lett. 64, 1433 (1990). [CrossRef]
  9. C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, Phys. Rev. E 57, 2365 (1998). [CrossRef]
  10. J. L. Mateos and G. Monsivais, Physica A 207, 445 (1994). [CrossRef]
  11. L. Gutierrez, A. Daz-de-Anda, J. Flores, R. A. Méndez-Sánchez, G. Monsivais, and A. Morales, Phys. Rev. Lett. 97, 114301 (2006). [CrossRef]
  12. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  13. OptiFDTD 2012 Optiwave, Version 11.2.
  14. A. Taflove and S. C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  15. F. López-Tejeira, F. J. Garca-Vidal, and L. Martín-Moreno, Phys. Rev. B 72, 161405 (2005). [CrossRef]
  16. A. A. Maradudin, T. A. Leskova, E. E. García-Guerrero, and E. R. Méndez, Low Temp. Phys. 36, 815 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited