OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1649–1652

Terahertz wave parametric amplifier

Saroj R. Tripathi, Yuusuke Taira, Shin’ichiro Hayashi, Kouji Nawata, Kousuke Murate, Hiroaki Minamide, and Kodo Kawase  »View Author Affiliations

Optics Letters, Vol. 39, Issue 6, pp. 1649-1652 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The importance of terahertz (THz) wave techniques has been demonstrated in various fields, and the range of applications is now expanding rapidly. However, the practical implementation of THz science to solve the real-world problems is restricted due to the lack not only of convenient high power THz wave emitters and sensitive detectors but also of efficient quasi-optical active devices such as amplifiers. In this work, we demonstrate the direct amplification of THz waves in room temperature using magnesium oxide-doped lithium niobate (MgO:LiNbO3) crystals as the nonlinear gain medium. The input THz wave is injected as a seed beam along with the pump beam into the nonlinear crystal and it is amplified by the optical parametric process. We report gain in excess of 30 dB with an input THz pulse energy of less than 1 pJ. We believe that this demonstration will contribute to the convenience and further applicability of THz frequency techniques.

© 2014 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Nonlinear Optics

Original Manuscript: December 26, 2013
Manuscript Accepted: February 4, 2014
Published: March 13, 2014

Saroj R. Tripathi, Yuusuke Taira, Shin’ichiro Hayashi, Kouji Nawata, Kousuke Murate, Hiroaki Minamide, and Kodo Kawase, "Terahertz wave parametric amplifier," Opt. Lett. 39, 1649-1652 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Pickwell and V. P. Wallace, J. Phys. D 39, R301 (2006). [CrossRef]
  2. H. Hirori and K. Tanaka, IEEE J. Sel. Top. Quantum Electron. 19, 8401110 (2013). [CrossRef]
  3. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, Opt. Express 11, 2549 (2003). [CrossRef]
  4. S. R. Tripathi, H. Ogura, H. Kawagoe, H. Inoue, T. Hasegawa, K. Takeya, and K. Kawase, Corros. Sci. 62, 5 (2012). [CrossRef]
  5. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, Opt. Express 20, 2881 (2012). [CrossRef]
  6. S. R. Tripathi, K. Murate, H. Uchida, K. Takeya, and K. Kawase, Appl. Phys. Express 6, 072703 (2013). [CrossRef]
  7. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, J. Opt. Soc. Am. B 25, B6 (2008). [CrossRef]
  8. H. Hirori, F. Blanchard, and K. Tanaka, Appl. Phys. Lett. 98, 091106 (2011). [CrossRef]
  9. B. S. Williams, Nat. Photonics 1, 517 (2007). [CrossRef]
  10. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, Nat. Commun. 4, 1 (2013). [CrossRef]
  11. H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, Phys. Rev. Lett. 71, 2725 (1993). [CrossRef]
  12. C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, J. Appl. Phys. 102, 063101 (2007). [CrossRef]
  13. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, Nat. Photonics 3, 715 (2009). [CrossRef]
  14. K. Kawase, J. Shikata, K. Imai, and H. Ito, Appl. Phys. Lett. 78, 2819 (2001). [CrossRef]
  15. K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, Appl. Phys. Lett. 80, 195 (2002). [CrossRef]
  16. A. Lee, Y. He, and H. Pask, IEEE J. Sel. Top. Quantum Electron. 49, 357 (2013). [CrossRef]
  17. Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, IEEE J. Sel. Top. Quantum Electron. 19, 8500307 (2013). [CrossRef]
  18. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997). [CrossRef]
  19. Y. Avetisyan, Y. Sasaki, and H. Ito, Appl. Phys. B 73, 511 (2001). [CrossRef]
  20. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, IEEE Trans. Microwave Theory Tech. 48, 653 (2000). [CrossRef]
  21. H. Sakai, H. Kan, and T. Taira, Opt. Express 16, 19891 (2008). [CrossRef]
  22. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, Appl. Opt. 48, 2899 (2009). [CrossRef]
  23. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, Appl. Opt. 40, 1423 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited