OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1665–1668

250  nm period grating transferred by proximity i-line mask-aligner lithography

Yannick Bourgin, Thomas Käsebier, and Uwe D. Zeitner  »View Author Affiliations

Optics Letters, Vol. 39, Issue 6, pp. 1665-1668 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This Letter, describes a fabrication method based on a high refractive index binary phase mask combined with a suitable illumination setup, which produces a close to normal incidence illumination, to fabricate sub-micrometer diffraction gratings. The method uses the i-line (365 nm) of a mercury lamp spectrum in a mask-aligner in proximity mode, to avoid any contact between the mask and the wafer, which is normally used to produce high resolution structures. The transfer of the structure in a fused silica wafer demonstrates that mask-aligner lithography can produce high aspect ratio sub-wavelength structures without resorting to any contact between mask and wafer.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.3740) Optical design and fabrication : Lithography
(220.2945) Optical design and fabrication : Illumination design
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Design and Fabrication

Original Manuscript: December 2, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: February 2, 2014
Published: March 14, 2014

Yannick Bourgin, Thomas Käsebier, and Uwe D. Zeitner, "250  nm period grating transferred by proximity i-line mask-aligner lithography," Opt. Lett. 39, 1665-1668 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985). [CrossRef]
  2. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 26, 2179 (2008). [CrossRef]
  3. Y. M. Song, J. S. Yu, and Y. T. Lee, Opt. Lett. 35, 276 (2010). [CrossRef]
  4. Y. Ye, Y. Zhou, and L. Chen, Appl. Opt. 48, 5035 (2009). [CrossRef]
  5. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007). [CrossRef]
  6. T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, Opt. Lett. 36, 445 (2011). [CrossRef]
  7. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993). [CrossRef]
  8. P. I. Jensen and A. Sudbo, IEEE Photon. Technol. Lett. 7, 783 (1995). [CrossRef]
  9. Y. Bourgin, Y. Jourlin, O. Parriaux, A. Talneau, S. Tonchev, C. Veillas, P. Karvinen, N. Passilly, A. R. Md Zain, R. M. De La Rue, J. Van Erps, and D. Troadec, Opt. Express 18, 10557 (2010). [CrossRef]
  10. E. Gamet, A. V. Tishchenko, and O. Parriaux, Appl. Opt. 46, 6719 (2007). [CrossRef]
  11. P. Laakkonen, M. Kuittinen, and J. Turunen, Opt. Commun. 192, 153 (2001). [CrossRef]
  12. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, Opt. Express 18, 20968 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited