OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1705–1708

Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization

Ayush Bhandari, Achuta Kadambi, Refael Whyte, Christopher Barsi, Micha Feigin, Adrian Dorrington, and Ramesh Raskar  »View Author Affiliations


Optics Letters, Vol. 39, Issue 6, pp. 1705-1708 (2014)
http://dx.doi.org/10.1364/OL.39.001705


View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-of-flight (ToF) cameras calculate depth maps by reconstructing phase shifts of amplitude-modulated signals. For broad illumination of transparent objects, reflections from multiple scene points can illuminate a given pixel, giving rise to an erroneous depth map. We report here a sparsity-regularized solution that separates K interfering components using multiple modulation frequency measurements. The method maps ToF imaging to the general framework of spectral estimation theory and has applications in improving depth profiles and exploiting multiple scattering.

© 2014 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(150.5670) Machine vision : Range finding

ToC Category:
Machine Vision

History
Original Manuscript: November 12, 2013
Revised Manuscript: February 5, 2014
Manuscript Accepted: February 7, 2014
Published: March 14, 2014

Citation
Ayush Bhandari, Achuta Kadambi, Refael Whyte, Christopher Barsi, Micha Feigin, Adrian Dorrington, and Ramesh Raskar, "Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization," Opt. Lett. 39, 1705-1708 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-6-1705


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Cash, T. K. Sinha, W. C. Chapman, H. Terawaki, B. M. Dawant, R. L. Galloway, and M. I. Miga, Med. Phys. 30, 1671 (2003). [CrossRef]
  2. P. Breuer, C. Eckes, and S. Müller, Computer Vision/Computer Graphics Collaboration Techniques (Springer, 2007), p. 247.
  3. M. C. Amann, T. Boch, R. Myllyla, M. Rioux, and M. Lescure, Opt. Eng. 40, 10 (2001). [CrossRef]
  4. Y. Cui, S. Schoun, D. Chan, S. Thrun, and C. Theobalt, Proceedings of Computer Vision and Pattern Recognition (IEEE, 2010), p. 1173.
  5. J. C. Halimeh and M. Wegener, Opt. Express 20, 63 (2012). [CrossRef]
  6. R. Lange and P. Seitz, IEEE J. Quantum Electron. 37, 390 (2001). [CrossRef]
  7. S. Foix, G. Alenya, and C. Torras, IEEE Sens. J. 11, 1917 (2011). [CrossRef]
  8. A. Kolb, E. Barth, R. Koch, and R. Larsen, Proc. Eurographics (The Eurographics Association, 2009), pp. 119–134.
  9. M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras: Principles, Methods and Applications (Springer, 2013).
  10. M. Frank, M. Plaue, H. Rapp, U. Köthe, B. Jähne, and F. A. Hamprecht, Opt. Eng. 48, 013602 (2009). [CrossRef]
  11. J. P. Godbaz, M. J. Cree, and A. A. Dorrington, Remote Sens. 4, 21 (2012). [CrossRef]
  12. A. P. P. Jongenelen, D. G. Bailey, A. D. Payne, A. A. Dorrington, and D. A. Carnegie, IEEE Trans. Instrum. Meas. 60, 1861 (2011). [CrossRef]
  13. A. Dorrington, J. Godbaz, M. Cree, A. Payne, and L. Streeter, Proc. SPIE 7864, 786404 (2011). [CrossRef]
  14. J. Godbaz, M. Cree, and A. Dorrington, Proc. SPIE 8296, 829618 (2012). [CrossRef]
  15. J. P. Godbaz, A. A. Dorrington, and M. J. Cree, TOF Range-Imaging Cameras (Springer, 2013), p. 91.
  16. A. Bhandari, A. Kadambi, R. Whyte, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Multifrequency time of flight in the context of transient renderings,” ACM SIGGRAPH Posters, New York, 2013, p. 46.
  17. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. A. Dorrington, and R. Raskar, ACM Trans. Graph. 32, 1 (2013). [CrossRef]
  18. S. K. Nayar, G. Krishman, M. D. Grossberg, and R. Raskar, ACM Trans. Graph. 25, 935 (2006). [CrossRef]
  19. S. Y. Chen, Y. F. Li, and J. W. Zhang, IEEE Trans. Image Process. 17, 167 (2008). [CrossRef]
  20. S. Y. Chen, Active Sensor Planning for Multiview Vision Tasks (Springer, 2008).
  21. S. Fuchs, Proceedings of Computer Vision and Pattern Recognition (IEEE, 2010), p. 3583.
  22. D. Jimenez, D. Pizarro, M. Mazo, and S. Palazuelos, Proceedings of Computer Vision and Pattern Recognition (IEEE, 2012), p. 893.
  23. P. Stoica and R. L. Moses, Introduction to Spectral Analysis (Prentice Hall, 1997).
  24. T. Yamaguchi and I. Zhang, Opt. Lett. 22, 1268 (1997). [CrossRef]
  25. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Signals Syst. Comp. 1, 40 (1993).
  26. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, Nat. Commun. 3, 745 (2012). [CrossRef]
  27. J. J. Barton, Phys. Rev. Lett. 67, 3106 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited