OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1709–1712

Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures

Feng Lan, Ziqiang Yang, Limei Qi, Xi Gao, and Zongjun Shi  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 1709-1712 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dual-resonance frequency selective surface filter in the THz range that uses bilayer modified complementary metamaterial structures is proposed in this Letter. The bandpass filter, with dual bands centered at 0.315 and 0.48 THz, uses a single crystal quartz substrate and is simulated, fabricated, and measured. To minimize the manufacturing risks of working with fragile and thin quartz substrates, efforts have been made to improve the transmission frequency response features at realizable substrate thicknesses. Experimental results from 0.1 to 0.6 THz measured by THz time-domain spectroscopy show excellent agreement with the simulation results.

© 2014 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(120.7000) Instrumentation, measurement, and metrology : Transmission
(040.2235) Detectors : Far infrared or terahertz
(160.3918) Materials : Metamaterials

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 28, 2013
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 10, 2014
Published: March 17, 2014

Feng Lan, Ziqiang Yang, Limei Qi, Xi Gao, and Zongjun Shi, "Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures," Opt. Lett. 39, 1709-1712 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, IEEE Trans. Microwave Theor. Tech. 52, 2438 (2004). [CrossRef]
  2. F. C. De Lucia, IEEE MTT-S Int. Microwave Symp. Dig. 3, 1579 (2002).
  3. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Huang, and T. Yen, Opt. Express 20, 7580 (2012).
  4. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high-sensitivity terahertz sensors,” in Conference on Lasers and Electro-Optics (CLEO), 2007.
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]
  6. E. Ekmekci and G. Turhan-Sayan, “Use of SRR based super-cells to obtain multiple resonances and broader frequency bands with negative effective permeability,” in IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting—Leading the Wave, AP-S/URSI, 2010.
  7. H. Tao, A. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, and X. Zhang, in 22nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2009), pp. 108–111.
  8. Y. Ma, A. Khalid’Shimul, C. Saha, J. P. Grant, and R. S. David, in IEEE Photonics Society Winter Topicals Meeting Series (WTM) (IEEE, 2010), pp. 50–51.
  9. A. Dobroiu, C. Otani, and K. Kawase, Meas. Sci. Technol. 17, R161 (2006). [CrossRef]
  10. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, Proc. SPIE 5070, 44 (2003). [CrossRef]
  11. V. Sanphuang, N. K. Nahar, and J. L. Volakis, in Proceedings of the 2012 IEEE National Aerospace and Electronics Conference (NAECON) (2013), pp. 38–39.
  12. J. K. So, M. A. Seo, D. S. Kim, J. H. Kim, S. S. Chang, J. H. Son, and G. S. Park, in 33rd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics (IRMMW-THz) (IEEE, 2008).
  13. C. Winnewisser, F. Lewen, J. Weinzierl, and H. Helm, in IEEE Sixth International Conference on Terahertz Electronics Proceedings (1998), p. 196.
  14. V. Hansen, H.-P. Gemuend, and E. Kreysa, in 13th International Conference on Terahertz Electronics (IRMMW-THz) (2005), pp. 209–210.
  15. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  16. M. Lu, W. Li, and E. R. Brown, Opt. Lett. 36, 1071 (2011). [CrossRef]
  17. S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, IEEE Trans. THz Technol. 2, 441 (2012).
  18. X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, Opt. Lett. 37, 906 (2012). [CrossRef]
  19. Y. Zhu, S. Vegesna, V. Kuryatkov, M. Holtz, M. Saed, and A. A. Bernusi, Opt. Lett. 37, 296 (2012). [CrossRef]
  20. H.-T. Chen, J. F. O’Hara, A. J. Taylor, and R. D. Averitt, Opt. Express 15, 1084 (2007). [CrossRef]
  21. H. S. Chen, L. X. Ran, J. Huangfu, H. Chen, X. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, Prog. Electromagn. Res. 51, 231 (2005).
  22. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2000).
  23. J. C. Vardaxoglou, Frequency Selective Surfaces (Wiley, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited