OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1756–1759

High gain, wide field of view concentrator for optical communications

Steve Collins, Dominic C. O’Brien, and Andrew Watt  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 1756-1759 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The field of view and gain of optical concentrators used within free space optical communications systems are constrained by conservation of etendue. In this Letter, consideration of the processes in a fluorescent concentrator leads to a simple design strategy for these concentrators for this application. Significantly, because fluorescent concentrators do not conserve etendue, this can lead to concentrators with wider fields of view and higher gains. A model of a fluorescent concentrator containing a quantum dot material suggests that it could have a gain 50 times higher than an etendue conserving concentrator with the same field of view.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(220.1770) Optical design and fabrication : Concentrators
(260.2510) Physical optics : Fluorescence
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Optical Design and Fabrication

Original Manuscript: October 24, 2013
Revised Manuscript: February 15, 2014
Manuscript Accepted: February 15, 2014
Published: March 19, 2014

Steve Collins, Dominic C. O’Brien, and Andrew Watt, "High gain, wide field of view concentrator for optical communications," Opt. Lett. 39, 1756-1759 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Kahn and J. R. Barry, Proc IEEE 85, 265 (1997). [CrossRef]
  2. D. O’Brien, R. Turnbull, L.-M. Hoa, G. Faulkner, O. Bouchet, P. Porcon, M. El Tabach, E. Gueutier, M. Wolf, L. Grobe, and L. Jianhui, J. Lightwave Technol. 30, 2181 (2012). [CrossRef]
  3. A. H. Azhar, T.-A. Tran, and D. C. O’Brien, IEEE Photon. Technol. Lett. 25, 171 (2013). [CrossRef]
  4. R. Winston, Appl. Opt. 15, 291 (1976). [CrossRef]
  5. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, Sol. Energy Mater. Sol. Cells 93, 176 (2009). [CrossRef]
  6. F. Purcell-Milton and Y. K. Gun’ko, J. Mater. Chem. 22, 16687 (2012). [CrossRef]
  7. J. S. Batchelder, A. H. Zewail, and T. Cole, Appl. Opt. 18, 3090 (1979). [CrossRef]
  8. S. Novak, L. Scarpantonio, J. Novak, M. Dai Prè, A. Martucci, J. D. Musgraves, N. D. McClenaghan, and K. Richardson, Opt. Mater. Express 3, 729 (2013). [CrossRef]
  9. M.-K. So, C. Xu, A. M. Loening, S. S. Gambhir, and J. Rao, Nat. Biotechnol. 24, 339 (2006). [CrossRef]
  10. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions, 14th ed. (Longman, 1973) p. 96.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited