OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1772–1774

Compositional dependence of room-temperature Stark splitting of Yb3+ in several popular glass systems

Binhua Yang, Xueqiang Liu, Xin Wang, Junjie Zhang, Lili Hu, and Liyan Zhang  »View Author Affiliations


Optics Letters, Vol. 39, Issue 7, pp. 1772-1774 (2014)
http://dx.doi.org/10.1364/OL.39.001772


View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The room-temperature Stark splitting properties of Yb3+ are practical and valuable for lasers because the working temperature of the gain media intensively increases with the laser output. In this Letter, the room-temperature Stark splitting properties of Yb3+ in several popular laser glasses are contrastively studied. Yb3+-doped germanate (Ge), borate (B), silicate (Si), bismuthate (Bi), tellurite (Te), and fluorophosphate (FP) glasses exhibit large Stark splitting and tend to operate close to the quasi-four-level scheme, whereas phosphate (P) glass shows the weakest Stark splitting and tends to operate close to the quasi-three-level one. Due to the low thermal conductivity of the glass matrix, Yb3+-doped P glass suffers from serious thermal problems and is difficult to achieve high laser output. The Stark splitting is also used to estimate the crystal-field strength of glass hosts and local Yb3+ ligand asymmetry degree. The results show that P glass shows weaker crystal-field effect and lower Yb3+ ligand asymmetry than Ge, Si, and B glasses.

© 2014 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.2750) Materials : Glass and other amorphous materials
(300.6170) Spectroscopy : Spectra
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 18, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 6, 2014
Published: March 19, 2014

Citation
Binhua Yang, Xueqiang Liu, Xin Wang, Junjie Zhang, Lili Hu, and Liyan Zhang, "Compositional dependence of room-temperature Stark splitting of Yb3+ in several popular glass systems," Opt. Lett. 39, 1772-1774 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-7-1772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Loeser, F. Röser, A. Reichelt, M. Siebold, S. Grimm, D. Litzkendorf, A. Schwuchow, J. Kirchhof, and U. Schramm, Opt. Lett. 37, 4029 (2012). [CrossRef]
  2. T. Wei, J. Li, and J. Zhu, Chin. Opt. Lett. 10, 040605 (2012). [CrossRef]
  3. A. I. Trikshev, A. S. Kurkov, and V. B. Tsvetkov, Quantum Electron. 42, 417 (2012). [CrossRef]
  4. R. Zhu, J. Wang, J. Zhou, J. Liu, and W. Chen, Chin. Opt. Lett. 10, 091402 (2012). [CrossRef]
  5. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010). [CrossRef]
  6. M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).
  7. M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, and J. Hein, Appl. Phys. B 101, 93 (2010). [CrossRef]
  8. L. Zhang, L. Hu, and Z. Jiang, Prog. Phys. 23, 473 (2003).
  9. S. Ohara and Y. Kuroiwa, Opt. Express 17, 14104 (2009). [CrossRef]
  10. D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, Quantum Electron. 34, 579 (2004). [CrossRef]
  11. K. Lu and N. K. Dutta, J. Appl. Phys. 91, 576 (2002). [CrossRef]
  12. G. Gao and L. Wondraczek, Opt. Mater. Express 3, 633 (2013). [CrossRef]
  13. C. Jiang, H. Liu, Q. Zeng, Y. Wang, J. Zhang, and F. Gan, Proc. SPIE 3942, 312 (2000). [CrossRef]
  14. G. Gao and L. Wondraczek, J. Mater. Chem. C 1, 1952 (2013). [CrossRef]
  15. S. Dai, A. Sugiyama, L. Hu, Z. Liu, and Z. Jiang, J. Non-Cryst. Solids 311, 138 (2002). [CrossRef]
  16. L. Zhang, Y. Leng, J. Zhang, and L. Hu, J. Mater. Sci. Technol. 26, 921 (2010). [CrossRef]
  17. X. Zou and H. Toratani, Phys. Rev. B 52, 15889 (1995). [CrossRef]
  18. D. Ehrt and T. Topfer, Proc. SPIE 4102, 95 (2000). [CrossRef]
  19. P. H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys. Condens. Matter 13, 5427 (2001). [CrossRef]
  20. F. Auzel and O. L. Malta, J. Phys. 44, 201 (1983). [CrossRef]
  21. F. Auzel, J. Lumin. 93, 129 (2001). [CrossRef]
  22. C. C. Robinson and J. T. Fournier, J. Phys. Chem. Solids 31, 895 (1970). [CrossRef]
  23. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, Opt. Lett. 36, 3708 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited