OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1783–1786

Dual modulation Faraday rotation spectroscopy of HO2 in a flow reactor

Brian Brumfield, Wenting Sun, Yin Wang, Yiguang Ju, and Gerard Wysocki  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 1783-1786 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The technique of dual modulation Faraday rotation spectroscopy (DM-FRS) has been applied to achieve technical-noise-limited detection of HO2 at the exit of an atmospheric pressure flow reactor. This was implemented by combining direct current modulation at 51 kHz of an external cavity quantum cascade laser system with 610 Hz modulation of the magnetic field generated by a Helmholtz coil. The DM-FRS measurement had a 1.5 times better signal-to-noise ratio than a conventional FRS measurement acquired under identical flow reactor conditions. High harmonic detection of the FRS signal also eliminated the substantial offset associated with electromagnetic interference pickup from the Helmholtz coils that is observed in the conventional FRS spectrum. A noise equivalent angle of 8.9×109radHz1/2 was measured for the DM-FRS measurement, corresponding to a 3σ detection limit for HO2 of 0.35ppmvHz1/2.

© 2014 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:

Original Manuscript: January 6, 2014
Manuscript Accepted: February 14, 2014
Published: March 19, 2014

Brian Brumfield, Wenting Sun, Yin Wang, Yiguang Ju, and Gerard Wysocki, "Dual modulation Faraday rotation spectroscopy of HO2 in a flow reactor," Opt. Lett. 39, 1783-1786 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zádor, C. A. Taatjes, and R. X. Fernandes, Prog. Energy Combust. Sci. 37, 371 (2011). [CrossRef]
  2. C. Bahrini, O. Herbinet, P.-A. Glaude, C. Schoemaecker, C. Fittschen, and F. Battin-Leclerc, Chem. Phys. Lett. 534, 1 (2012). [CrossRef]
  3. C. Bahrini, O. Herbinet, P.-A. Glaude, C. Schoemaecker, C. Fittschen, and F. Battin-Leclerc, J. Am. Chem. Soc. 134, 11944 (2012). [CrossRef]
  4. Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D. F. Davidson, and R. K. Hanson, Proc. Combust. Inst. 34, 565 (2013). [CrossRef]
  5. B. Brumfield, W. T. Sun, Y. G. Ju, and G. Wysocki, J. Phys. Chem. Lett. 4, 872 (2013). [CrossRef]
  6. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, J. Chem. Phys. 72, 6602 (1980). [CrossRef]
  7. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009). [CrossRef]
  8. H. Ganser, W. Urban, and J. M. Brown, Mol. Phys. 101, 545 (2003). [CrossRef]
  9. B. Brumfield and G. Wysocki, Opt. Express 20, 29727 (2012). [CrossRef]
  10. Y. Wang, M. Nikodem, R. Dweik, and G. Wysocki, A Dual Modulation Faraday Rotation Spectrometer for Isotope-Labeled Analysis Of Exhaled Nitric Oxide (Optical Society of America, 2013), p. BM4A.3.
  11. Y. Wang, F. Cikach, J. Barnes, L. Dababneh, D. Grove, S. Erzurum, S. Comhair, C. Kao, R. Dweik, and G. Wysocki, A Faraday Rotation Spectrometer for Study of NO Isotopes in Breath (Optical Society of America, 2013), p. AF1L.5.
  12. Y. Wang, “Development of novel mid-infrared spectrometers based on quantum cascade lasers,” Ph.D. thesis (Department of Electrical Engineering, Princeton University, 2013).
  13. Y. Wang, M. Nikodem, and G. Wysocki, Opt. Express 21, 740 (2013). [CrossRef]
  14. J. A. Silver, Appl. Opt. 31, 707 (1992). [CrossRef]
  15. G. V. H. Wilson, J. Appl. Phys. 34, 3276 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited