OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1787–1790

All-optical diode based on dipole modes of Kerr microcavity in asymmetric L-shaped photonic crystal waveguide

E. N. Bulgakov and A. F. Sadreev  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 1787-1790 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A design of all-optical diode in L-shaped photonic crystal waveguide is proposed that uses the multistability of single nonlinear Kerr microcavity with two dipole modes. Asymmetry of the waveguide is achieved through different couplings of the dipole modes with the left and right legs of the waveguide. Using coupled mode theory we demonstrate an extremely high transmission contrast. The direction of optical diode transmission can be controlled by power or frequency of injected light. The theory agrees with the numerical solution of the Maxwell equations.

© 2014 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4320) Optical devices : Nonlinear optical devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Nonlinear Optics

Original Manuscript: February 5, 2014
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 19, 2014
Published: March 19, 2014

E. N. Bulgakov and A. F. Sadreev, "All-optical diode based on dipole modes of Kerr microcavity in asymmetric L-shaped photonic crystal waveguide," Opt. Lett. 39, 1787-1790 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Scalora, J. R. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994). [CrossRef]
  2. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001). [CrossRef]
  3. W. Ding, B. Lukyanchuk, and C.-W. Qiu, Phys. Rev. A 85, 025806 (2012). [CrossRef]
  4. S. F. Mingaleev and Y. S. Kivshar, J. Opt. Soc. Am. B 19, 2241 (2002). [CrossRef]
  5. N.-S. Zhao, H. Zhou, Q. Guo, W. Hu, X.-B. Yang, S. Lan, and X.-S. Lin, J. Opt. Soc. Am. B 23, 2434 (2006). [CrossRef]
  6. X.-S. Lin, J.-H. Yan, L.-J. Wu, and S. Lan, Opt. Express 16, 20949 (2008). [CrossRef]
  7. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Lett. 23, 1855 (1998). [CrossRef]
  8. M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, Opt. Lett. 28, 2506 (2003). [CrossRef]
  9. E. N. Bulgakov and A. F. Sadreev, J. Opt. Soc. Am. B 29, 2924 (2012). [CrossRef]
  10. E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 85, 165305 (2012). [CrossRef]
  11. E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 86, 075125 (2012). [CrossRef]
  12. J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  13. W. Suh, Z. Wang, and S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004). [CrossRef]
  14. H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited