OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1795–1798

Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses

J. Landsberg, D. Romanini, and E. Kerstel  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 1795-1798 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



So far, cavity-enhanced absorption spectroscopy (CEAS) has been based on optical cavities with a high finesse F that, however, has been limited by mirror reflectivity and by cavity transmission considerations to a few times 10,000. Here, we demonstrate a compact near-infrared optical-feedback CEAS instrument for water vapor isotope ratio measurements, with F>140,000. We show that this very high finesse can be effectively exploited to improve the detection sensitivity to the full extent predicted by the increased effective path length to reach a noise equivalent absorption sensitivity of 5.7×1011cm1Hz1/2 for a full spectrum registration (including possible effects of interference fringes and fit model inadequacies).

© 2014 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(300.6190) Spectroscopy : Spectrometers
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:

Original Manuscript: November 8, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 18, 2014
Published: March 19, 2014

J. Landsberg, D. Romanini, and E. Kerstel, "Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses," Opt. Lett. 39, 1795-1798 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, in Springer Series in Optical Sciences (Springer, 2014), Vol. 179, Chap. 1, pp. 1–60.
  2. F. Aemisegger, P. Sturm, P. Graf, H. Sodemann, S. Pfahl, A. Knohl, and H. Wernli, Atmos. Meas. Tech. 5, 1491 (2012). [CrossRef]
  3. D. S. Sayres, E. Moyer, T. Hanisco, J. St. Clair, F. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. Engel, J. Kroll, J. Paul, and J. G. Anderson, Rev. Sci. Instrum. 80, 044102 (2009). [CrossRef]
  4. D. Noone, C. Risi, A. Bailey, M. Berkelhammer, D. Brown, N. Buenning, S. Gregory, J. Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe, Atmos. Chem. Phys. 13, 1607 (2013). [CrossRef]
  5. C. Sturm, Q. Zhang, and D. Noone, Clim. Past 6, 115 (2010). [CrossRef]
  6. M. Bolot, B. Legras, and E. Moyer, Atmos. Chem. Phys. 13, 7903 (2013). [CrossRef]
  7. C. Risi, D. Noone, J. Worden, C. Frankenberg, G. Stiller, M. Kiefer, B. Funke, K. Walker, P. Bernath, M. Schneider, S. Bony, J. Lee, D. Brown, and C. Sturm, J. Geophys. Res. Atmos. 117, D05304 (2012).
  8. C. Dyroff, D. Fütterer, and A. Zahn, Appl. Phys. B 98, 537 (2010). [CrossRef]
  9. C. R. Webster and A. Heymsfield, Science 302, 1742 (2003). [CrossRef]
  10. R. Q. Iannone, S. Kassi, H. J. Jost, M. Chenevier, D. Romanini, H. Meijer, S. Dhaniyala, M. Snels, and E. Kerstel, Isot. Environ. Health Stud. 45, 303 (2009). [CrossRef]
  11. E. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H. J. Jost, and D. Romanini, Appl. Phys. B. 85, 397 (2006). [CrossRef]
  12. R. Q. Iannone, “Development of a near-infrared optical feedback cavity enhanced absorption spectrometer for atmospheric water vapor isotope ratio measurements,” Ph.D. thesis (University of Groningen, 2009).
  13. E. Moyer, D. Sayres, G. Engel, J. St. Clair, F. Keutsch, N. Allen, J. Kroll, and J. G. Anderson, Appl. Phys. B. 92, 467 (2008). [CrossRef]
  14. To the best of our knowledge, the term NEAS was first used in conjunction with CRDS by [15]. Moyer et al. [13] provide a useful survey of this and other figures of merit used to specify long optical path length spectrometers.
  15. D. Romanini and K. K. Lehmann, J. Chem. Phys. 99, 6287 (1993). [CrossRef]
  16. J. Ye, L. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6 (1998). [CrossRef]
  17. P. Ehlers, I. Silander, J. Wang, and O. Axner, J. Opt. Soc. Am. B 29, 1305 (2012). [CrossRef]
  18. P. Werle, Appl. Phys. B 102, 313 (2011). [CrossRef]
  19. J. Morville, D. Romanini, and E. Kerstel, Springer Ser. Opt. Sci. 179, 163 (2014). [CrossRef]
  20. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005). [CrossRef]
  21. P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989). [CrossRef]
  22. S. G. Rautian and I. I. Sobel’man, Phys.-Usp. 9, 701 (1967).
  23. W. Dansgaard, Tellus 16, 436 (1964). [CrossRef]
  24. E. Barkan and B. Luz, Rapid Commun. Mass Spectrom. 19, 3737 (2005). [CrossRef]
  25. J. Landsberg, “Development of an OFCEAS laser spectrometer for water vapor isotope measurements at low water concentration,” Ph.D. thesis (University of Grenoble and University of Groningen, 2014).
  26. L. Gianfrani, G. Gagliardi, M. van Burgel, and E. Kerstel, Opt. Express 11, 1566 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited