OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1941–1944

Diffuse reflectivity measurement using cubic cavity

Jia Yu, Y. G. Zhang, Qiang Gao, Gang Hu, Z. G. Zhang, and S. H. Wu  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 1941-1944 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (550 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for measuring diffuse reflectivity using cubic cavity based on the variable port fraction method was developed by measuring oxygen P11 line at 762 nm using tunable diode laser absorption spectroscopy. An experimental method to determine the additional path length l0 was presented. We measured the diffuse reflectivity of a cubic cavity with scattering coatings of different thickness. The error of diffuse reflectivity was reduced from 0.004 to 0.0003 when the diffuse reflectivity increased from 0.867(4) to 0.9887(3). A simulation result manifests that the error of diffuse reflectivity has the potential to be further reduced at higher diffuse reflectivity.

© 2014 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(290.4210) Scattering : Multiple scattering
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:

Original Manuscript: December 18, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 17, 2014
Published: March 24, 2014

Jia Yu, Y. G. Zhang, Qiang Gao, Gang Hu, Z. G. Zhang, and S. H. Wu, "Diffuse reflectivity measurement using cubic cavity," Opt. Lett. 39, 1941-1944 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Wilson and S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990). [CrossRef]
  2. A. B. Murphy, Appl. Opt. 46, 3133 (2007). [CrossRef]
  3. G. Xu, M. Tazawa, P. Jin, and K. Yoshimura, Appl. Opt. 42, 1352 (2003). [CrossRef]
  4. S. D. Noble, A. Boeré, T. Kondratowicz, T. G. Crowe, R. B. Brown, and D. A. Naylor, Can. J. Remote Sens. 34, 68 (2008). [CrossRef]
  5. H. Park and C. Kim, Opt. Lett. 37, 611 (2012). [CrossRef]
  6. L. Hanssen, Appl. Opt. 40, 3196 (2001). [CrossRef]
  7. D. Rönnow and A. Roos, Rev. Sci. Instrum. 66, 2411 (1995). [CrossRef]
  8. J. Yu, F. Zheng, Q. Gao, Y. Li, Y. Zhang, Z. Zhang, and S. Wu, Appl. Phys. B, doi: 10.1007/s00340-013-5661-5 (posted online Oct.10, 2013).
  9. J. Hodgkinson, D. Masiyano, and R. P. Tatam, Appl. Opt. 48, 5748 (2009). [CrossRef]
  10. Labsphere Inc. “A guide to integrating sphere theory and applications,” (1994) http://www.labsphere.com .
  11. E. Hawe, P. Chambers, C. Fitzpatrick, and E. Lewis, Meas. Sci. Technol. 18, 3187 (2007). [CrossRef]
  12. Avian Technologies LLC, http://www.aviantechnologies.com/products/coatings/highreflectance.php .
  13. E. S. Fry, J. Musser, G. W. Kattawar, and P. W. Zhai, Appl. Opt. 45, 9053 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited