OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1949–1952

Heterodyne displacement interferometer, insensitive for input polarization

Arjan J. H. Meskers, Jo W. Spronck, and Robert H. Munnig Schmidt  »View Author Affiliations


Optics Letters, Vol. 39, Issue 7, pp. 1949-1952 (2014)
http://dx.doi.org/10.1364/OL.39.001949


View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error source and discuss two interferometer designs, designed at TU Delft, that showed very low levels of PNL when subjected to any polarization state and/or polarization orientation. In the experiments, quarter-wave plates (qwps) and half-wave plates (hwps) were used to manipulate the polarization state and polarization orientation, respectively. Results from a commercial coaxial system showed first-order PNL exceeding 10 nm (together with higher order PNL) when the system ceased operation at around ±15°hwp rotation or ±20°qwp rotation. The two “Delft interferometers,” however, continued operation beyond these maxima and obtained first-order PNLs in the order of several picometers, without showing higher order PNLs. The major advantage of these interferometers, beside their high linearity, is that they can be fully fiber coupled and thus allow for a modular system buildup.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 3, 2014
Revised Manuscript: February 21, 2014
Manuscript Accepted: February 21, 2014
Published: March 24, 2014

Citation
Arjan J. H. Meskers, Jo W. Spronck, and Robert H. Munnig Schmidt, "Heterodyne displacement interferometer, insensitive for input polarization," Opt. Lett. 39, 1949-1952 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-7-1949


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. Udem, R. Holzwarth, and T. W. Hansch, Nature 416, 233 (2002). [CrossRef]
  2. G. M. Harry, Class. Quantum Grav. 27, 084006 (2010). [CrossRef]
  3. C. Wagner and N. Harned, Nat. Photonics 4, 24 (2010). [CrossRef]
  4. A. J. H. Meskers, D. Voigt, and J. W. Spronck, Opt. Express 21, 17920 (2013). [CrossRef]
  5. S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, Precis. Eng. 26, 448 (2002). [CrossRef]
  6. G. Fedotova, Meas. Tech. 23, 577 (1980). [CrossRef]
  7. R. Quenelle, Hewlett Packard J. 34, 10 (1983).
  8. C. Sutton, J. Phys. E 20, 1290 (1987). [CrossRef]
  9. W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992). [CrossRef]
  10. C. Wu and R. D. Deslattes, Appl. Opt. 37, 6696 (1998). [CrossRef]
  11. W. Hou, Precis. Eng. 30, 337 (2006). [CrossRef]
  12. M. Tanaka, T. Yamagami, and K. Nakayama, IEEE Trans. Instrum. Meas. 38, 552 (1989). [CrossRef]
  13. C.-M. Wu and R. D. Deslattes, Appl. Opt. 38, 4089 (1999). [CrossRef]
  14. T. Schmitz and J. Beckwith, J. Mod. Opt. 49, 2105 (2002). [CrossRef]
  15. K.-N. Joo, J. D. Ellis, J. W. Spronck, P. J. M. van Kan, and R. H. M. Schmidt, Opt. Lett. 34, 386 (2009). [CrossRef]
  16. K.-N. Joo, J. D. Ellis, E. S. Buice, J. W. Spronck, and R. H. M. Schmidt, Opt. Express 18, 1159 (2010). [CrossRef]
  17. J. D. Ellis, A. J. H. Meskers, J. W. Spronck, and R. H. M. Schmidt, Opt. Lett. 36, 3584 (2011). [CrossRef]
  18. C. Weichert, P. Kochert, R. Koning, J. Flugge, B. Andreas, U. Kuetgens, and A. Yacoot, Meas. Sci. Technol. 23, 094005 (2012). [CrossRef]
  19. J. Lawall and E. Kessler, Rev. Sci. Instrum. 71, 2669 (2000). [CrossRef]
  20. Spatial heterodyne frequency generation Delft system: Thorlabs stabilized He–Ne laser HRS015, ISOMET acousto-optic modulators OAM 1141-T40-2 and drivers 531C-L (39 and 41 MHz), and phase measurement readout according to Agilent Technologies phase measurement board N1225A.
  21. Agilent Technologies interferometer E1826G (optical resolution of 4), Zeeman laser source 5517D, and phase measurement board N1225A.
  22. V. G. Badami and S. R. Paterson, Precis. Eng. 24, 41 (2000). [CrossRef]
  23. T. L. Schmitz, D. Chu, and L. Houck, Meas. Sci. Technol. 17, 3195 (2006). [CrossRef]
  24. C. Schluchter, V. Ganguly, D. Chu, and T. L. Schmitz, Precis. Eng. 35, 241 (2011). [CrossRef]
  25. Capacitive probe 2805MSE A9089 and electronic readout using MicroSense, LLC, model 4810.
  26. C.-M. Wu, Opt. Commun. 215, 17 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited