OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 1972–1975

Daytime measurements of atmospheric temperature profiles (2–15  km) by lidar utilizing Rayleigh–Brillouin scattering

Benjamin Witschas, Christian Lemmerz, and Oliver Reitebuch  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 1972-1975 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, we report on a novel method for measuring atmospheric temperature profiles by lidar during daytime for heights of 2–15.3 km, with a vertical resolution of 0.3–2.2 km, using Rayleigh–Brillouin scattering. The measurements are performed by scanning a laser (λ=355nm) over a 12 GHz range and using a Fabry–Pérot interferometer as discriminator. The temperature is derived by using a new analytical line shape model assuming standard atmospheric pressure conditions. Two exemplary temperature profiles resulting from measurements over 14 and 27 min are shown. A comparison with radiosonde temperature measurements shows reasonable agreement. In cloud-free conditions, the temperature difference reaches up to 5 K within the boundary layer, and is smaller than 2.5 K above. The statistical error of the derived temperatures is between 0.15 and 1.5 K.

© 2014 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(280.6780) Remote sensing and sensors : Temperature

ToC Category:

Original Manuscript: January 15, 2014
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 24, 2014
Published: March 25, 2014

Benjamin Witschas, Christian Lemmerz, and Oliver Reitebuch, "Daytime measurements of atmospheric temperature profiles (2–15  km) by lidar utilizing Rayleigh–Brillouin scattering," Opt. Lett. 39, 1972-1975 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Greding, and J. Höffner, Atmos. Chem. Phys. 4, 793 (2004). [CrossRef]
  2. A. Behrendt, T. Nakamura, and T. Tsuda, Appl. Opt. 43, 2930 (2004). [CrossRef]
  3. M. Radlach, A. Behrendt, and V. Wulfmeyer, Atmos. Chem. Phys. 8, 159 (2008). [CrossRef]
  4. A. Behrendt and J. Reichardt, Appl. Opt. 39, 1372 (2000). [CrossRef]
  5. M. Fraczek, A. Behrendt, and N. Schmitt, Appl. Opt. 51, 148 (2012). [CrossRef]
  6. P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, Appl. Opt. 45, 2474 (2006). [CrossRef]
  7. B. Witschas, in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.
  8. R. L. Schwiesow and L. Lading, Appl. Opt. 20, 1972 (1981). [CrossRef]
  9. C. Y. She, R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, Opt. Lett. 17, 541 (1992). [CrossRef]
  10. R. Alvarez, L. Caldwell, P. Wolyn, D. Krueger, T. McKee, and C. She, J. Atmos. Ocean. Technol. 10, 546 (1993). [CrossRef]
  11. G. Tenti, C. Boley, and R. Desai, Can. J. Phys. 52, 285 (1974).
  12. J. Hair, L. Caldwell, D. Krueger, and C. She, Appl. Opt. 40, 5280 (2001). [CrossRef]
  13. D. Hua, M. Uchida, and T. Kobayashi, Appl. Opt. 44, 1315 (2005). [CrossRef]
  14. B. Witschas, Appl. Opt. 50, 267 (2011). [CrossRef]
  15. B. Witschas, Appl. Opt. 50, 5758 (2011). [CrossRef]
  16. European Space Agency, (European Space Research and Technology Centre, 2008).
  17. O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, J. Atmos. Ocean. Technol. 26, 2501 (2009). [CrossRef]
  18. B. Witschas, C. Lemmerz, and O. Reitebuch, Appl. Opt. 51, 6207 (2012). [CrossRef]
  19. B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, Appl. Opt. 49, 4217 (2010). [CrossRef]
  20. M. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, Phys. Rev. A 82, 1094 (2010). [CrossRef]
  21. N. Hagen, M. Kupinski, and E. L. Dereniak, Appl. Opt. 46, 5374 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited