OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 2024–2027

Spatial frequency doubling with two-step technique

Sensen Li, Lujian Chen, Xiaopeng Dong, Xuechang Ren, Xiangsu Zhang, and Shou Liu  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 2024-2027 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phenomenon of spatial frequency doubling generated by a two-step technique with the collimated beam at normal incidence in the second exposure is presented. Theoretical analysis demonstrates that the phenomenon is induced by the Talbot effect in photoresist and the superposition of two exposures, and the minimum achievable period of the grating with double spatial frequency can be close to one half of the exposure wavelength in vacuum, divided by the refractive index of photoresist λ/2n. The two-step technique has the potential to be a simpler and more practical resolution-improving technique for the Talbot-effect-based approach of spatial frequency doubling.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.1970) Holography : Diffractive optics

ToC Category:

Original Manuscript: January 13, 2014
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 25, 2014
Published: March 26, 2014

Sensen Li, Lujian Chen, Xiaopeng Dong, Xuechang Ren, Xiangsu Zhang, and Shou Liu, "Spatial frequency doubling with two-step technique," Opt. Lett. 39, 2024-2027 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Zimmerman, “Double patterning lithography: double the trouble or double the fun?” SPIE Newsroom, doi: 10.1117/2.1200906.1691 (2009).
  2. L. F. Johnson and K. A. Ingersoll, Appl. Phys. Lett. 38, 532 (1981). [CrossRef]
  3. B. Cui, Z. N. Yu, H. X. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007). [CrossRef]
  4. H. Lee and R. Verma, Opt. Express 19, 16518 (2011). [CrossRef]
  5. I. Z. Indutnyi, V. A. Dan’ko, V. I. Myn’ko, P. E. Shepeliavyi, and O. V. Bereznyova, J. Optoelectron. Adv. Mater. 13, 1467 (2011).
  6. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 56, 67 (2003).
  7. D. C. Flanders, A. M. Hawryluk, and H. I. Smith, J. Vac. Sci. Technol. 16, 1949 (1979). [CrossRef]
  8. H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005). [CrossRef]
  9. S. S. Sarkar, H. H. Solak, M. Saidani, C. David, and J. F. van der Veen, Opt. Lett. 36, 1860 (2011). [CrossRef]
  10. H. H. Solak, C. Dais, and F. Clube, Opt. Express 19, 10686 (2011). [CrossRef]
  11. T. Sato, J. Vac. Sci. Technol. B 30, 06FG02 (2012). [CrossRef]
  12. S. S. Li, S. Liu, and X. S. Zhang, Proc. SPIE 5456, 374 (2004). [CrossRef]
  13. S. S. Li, S. Liu, X. S. Zhang, Y. Liu, and X. C. Ren, Proc. SPIE 5636, 597 (2005). [CrossRef]
  14. K. Patorski, Prog. Opt. 27, 1 (1989). [CrossRef]
  15. V. Arrizón and J. Ojeda-Castañeda, J. Opt. Soc. Am. A 9, 1801 (1992). [CrossRef]
  16. Y. Q. Lu, C. H. Zhou, S. Q. Wang, and B. Wang, J. Opt. Soc. Am. A 23, 2154 (2006). [CrossRef]
  17. Y. Fang, Q. F. Tan, M. Q. Zhang, and G. F. Jin, Opt. Commun. 285, 4161 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited