OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 2068–2071

Room temperature Bloch surface wave polaritons

Giovanni Lerario, Alessandro Cannavale, Dario Ballarini, Lorenzo Dominici, Milena De Giorgi, Marco Liscidini, Dario Gerace, Daniele Sanvitto, and Giuseppe Gigli  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 2068-2071 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polaritons are hybrid light-matter quasi-particles that have gathered a significant attention for their capability of showing room temperature and out-of-equilibrium Bose–Einstein condensation. More recently, a novel class of ultrafast optical devices have been realized by using flows of polariton fluids, such as switches, interferometers, and logical gates. However, polariton lifetimes and propagation distances are strongly limited by photon losses and accessible in-plane momenta in normal microcavity samples. In this work, we show experimental evidence of the formation of room temperature propagating polariton states arising from the strong coupling between organic excitons and a Bloch surface wave. This result, which was only recently predicted, paves the way for the realization of polariton devices that could allow lossless propagation up to macroscopic distances.

© 2014 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(230.1480) Optical devices : Bragg reflectors
(240.0310) Optics at surfaces : Thin films
(240.5420) Optics at surfaces : Polaritons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: January 20, 2014
Manuscript Accepted: February 18, 2014
Published: March 27, 2014

Giovanni Lerario, Alessandro Cannavale, Dario Ballarini, Lorenzo Dominici, Milena De Giorgi, Marco Liscidini, Dario Gerace, Daniele Sanvitto, and Giuseppe Gigli, "Room temperature Bloch surface wave polaritons," Opt. Lett. 39, 2068-2071 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Andreani, in Electron and Photon Confinement in Semiconductor Nanostructures, B. Deveaud, A. Quattropani, and P. Schwendimann, eds. (IOS, 2003), p. 105.
  2. For a recent review: A. V. Kavokin, Phys. Status Solidi B 247, 1898 (2010). [CrossRef]
  3. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymaska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409 (2006). [CrossRef]
  4. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science 316, 1007 (2007).
  5. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, Nature 457, 291 (2009). [CrossRef]
  6. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, and A. Bramati, Nat. Phys. 5, 805 (2009). [CrossRef]
  7. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013). [CrossRef]
  8. T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. Lett. 101, 016402 (2008). [CrossRef]
  9. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, Nat. Commun. 4, 1778 (2013). [CrossRef]
  10. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998). [CrossRef]
  11. V. M. Agranovich and G. C. La Rocca, Solid State Commun. 135, 544 (2005). [CrossRef]
  12. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003).
  13. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, Opt. Lett. 33, 243 (2008). [CrossRef]
  14. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, Appl. Phys. Lett. 98, 121118 (2011). [CrossRef]
  15. M. Liscidini and J. E. Sipe, J. Opt. Soc. Am. 26, 279 (2009). [CrossRef]
  16. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, Nano Lett. 10, 2087 (2010).
  17. M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, Appl. Phys. Lett. 95, 251108 (2009). [CrossRef]
  18. C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, Appl. Phys. Lett. 95, 151114 (2009). [CrossRef]
  19. K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, Nat. Mater. 13, 271 (2014). [CrossRef]
  20. J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Nat. Mater. 13, 247 (2014). [CrossRef]
  21. J. R. Tischler, M. S. Bradley, and V. Bulovic, Opt. Lett. 31, 2045 (2006). [CrossRef]
  22. C. Neipp, S. Gallego, M. Ortuño, A. Marrquez, A. Beléndez, and I. Pascual, Opt. Commun. 224, 27 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited