OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 2113–2116

Transformation optics scheme for two-dimensional materials

Anshuman Kumar, Kin Hung Fung, M. T. Homer Reid, and Nicholas X. Fang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 2113-2116 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-dimensional optical materials, such as graphene, can be characterized by surface conductivity. So far, the transformation optics schemes have focused on three-dimensional properties such as permittivity ϵ and permeability μ. In this Letter, we use a scheme for transforming surface currents to highlight that the surface conductivity transforms in a way different from ϵ and μ. We use this surface conductivity transformation to demonstrate an example problem of reducing the scattering of the plasmon mode from sharp protrusions in graphene.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:

Original Manuscript: December 30, 2013
Revised Manuscript: February 26, 2014
Manuscript Accepted: February 27, 2014
Published: March 28, 2014

Anshuman Kumar, Kin Hung Fung, M. T. Homer Reid, and Nicholas X. Fang, "Transformation optics scheme for two-dimensional materials," Opt. Lett. 39, 2113-2116 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, Science 337, 549 (2012). [CrossRef]
  2. P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, and F. J. Garcia-Vidal, Nano Lett. 10, 1985 (2010). [CrossRef]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006). [CrossRef]
  4. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science 323, 366 (2009). [CrossRef]
  5. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nat. Mater. 8, 568 (2009). [CrossRef]
  6. D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, Appl. Phys. Lett. 93, 251111 (2008). [CrossRef]
  7. D. Schurig, J. B. Pendry, and D. R. Smith, Opt. Express 15, 14772 (2007). [CrossRef]
  8. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). [CrossRef]
  9. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
  10. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). [CrossRef]
  11. J. M. Hamm and O. Hess, Science 340, 1298 (2013). [CrossRef]
  12. A. Vakil and N. Engheta, Science 332, 1291 (2011). [CrossRef]
  13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). [CrossRef]
  14. M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009). [CrossRef]
  15. J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, ACS Nano 5, 4359 (2011). [CrossRef]
  16. B. Arigong, J. Shao, H. Ren, G. Zheng, J. Lutkenhaus, H. Kim, Y. Lin, and H. Zhang, Opt. Express 20, 13789 (2012). [CrossRef]
  17. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, Opt. Express 21, 10475 (2013). [CrossRef]
  18. J. Li and J. B. Pendry, Phys. Rev. Lett. 101, 203901 (2008). [CrossRef]
  19. B. Arigong, J. Ding, H. Ren, R. Zhou, H. Kim, Y. Lin, and H. Zhang, J. Appl. Phys. 114, 144301 (2013). [CrossRef]
  20. R. C. Mitchell-Thomas, T. M. McManus, O. Quevedo-Teruel, S. A. R. Horsley, and Y. Hao, Phys. Rev. Lett. 111, 213901 (2013). [CrossRef]
  21. S. A. Cummer, N. Kundtz, and B.-I. Popa, Phys. Rev. A 80, 033820 (2009). [CrossRef]
  22. V. M. Pereira, R. M. Ribeiro, N. M. R. Peres, and A. H. C. Neto, Europhys. Lett. 92, 67001 (2010). [CrossRef]
  23. F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. Rev. B 81, 035411 (2010). [CrossRef]
  24. A. R. Wright and C. Zhang, Appl. Phys. Lett. 95, 163104 (2009). [CrossRef]
  25. Y. Liang, S. Huang, and L. Yang, J. Mater. Res. 27, 403 (2012). [CrossRef]
  26. H. J. Xu, W. B. Lu, Y. Jiang, and Z. G. Dong, Appl. Phys. Lett. 100, 051903 (2012). [CrossRef]
  27. Y. Bao, C. He, F. Zhou, C. Stuart, and C. Sun, Appl. Phys. Lett. 101, 031910 (2012). [CrossRef]
  28. D. S. Bychanok, M. V. Shuba, P. P. Kuzhir, S. A. Maksimenko, V. V. Kubarev, M. A. Kanygin, O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub, J. Appl. Phys. 114, 114304 (2013). [CrossRef]
  29. D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, Adv. Mater. 24, 916 (2012). [CrossRef]
  30. F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, and C. Sun, Sci. Rep. 1, 78 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited