OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 2164–2167

Direct holographic imaging of ultrafast laser damage process in thin films

Nerijus Šiaulys, Laurent Gallais, and Andrius Melninkaitis  »View Author Affiliations

Optics Letters, Vol. 39, Issue 7, pp. 2164-2167 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dynamic process of femtosecond laser-induced damage formation in dielectric thin films is reconstructed from a series of time-resolved images. Ta2O5 single-layer coatings of four different thicknesses have been investigated in transmission mode by means of time-resolved off-axis digital holography. Different processes overlapped in time were found to occur; namely, the Kerr effect, free-electron generation, ultrafast lattice heating, and shockwave generation. The trends in contribution of these effects are qualitatively reproduced by numerical models based on electron-rate equations and Drude theory, which take into account transient changes in the films and interference effects of the pump and probe pulses.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(310.0310) Thin films : Thin films
(100.0118) Image processing : Imaging ultrafast phenomena
(090.1995) Holography : Digital holography

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 2, 2014
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 11, 2014
Published: March 31, 2014

Nerijus Šiaulys, Laurent Gallais, and Andrius Melninkaitis, "Direct holographic imaging of ultrafast laser damage process in thin films," Opt. Lett. 39, 2164-2167 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Quéré, S. Guizard, and Ph. Martin, Europhys. Lett. 56, 138 (2001). [CrossRef]
  2. M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, Appl. Phys. A 81, 317 (2005). [CrossRef]
  3. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 63, 109 (1996). [CrossRef]
  4. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, Appl. Opt. 50, C188 (2011). [CrossRef]
  5. S. G. Demos, R. N. Raman, and R. A. Negres, Opt. Express 21, 4875 (2013). [CrossRef]
  6. M. C. Downer, R. L. Fork, and C. V. Shank, J. Opt. Soc. Am. B 2, 595 (1985). [CrossRef]
  7. D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, Appl. Phys. A 92, 803 (2008). [CrossRef]
  8. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, Opt. Lett. 33, 58 (2008). [CrossRef]
  9. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, Opt. Express 19, 5725 (2011). [CrossRef]
  10. A. Urniežius, N. Šiaulys, V. Kudriašov, V. Sirutkaitis, and A. Melninkaitis, Appl. Phys. A 108, 343 (2012). [CrossRef]
  11. L. Zhu, C. Zhou, T. Wu, W. Jia, Z. Fan, Y. Ma, and G. Niu, Appl. Opt. 49, 2510 (2010). [CrossRef]
  12. T. Balciunas, A. Melninkaitis, A. Vanagas, and V. Sirutkaitis, Opt. Lett. 34, 2715 (2009). [CrossRef]
  13. N. Šiaulys, V. Kudriašov, T. Stanislauskas, T. Malinauskas, A. Urniežius, and A. Melninkaitis, Opt. Lett. 37, 4916 (2012). [CrossRef]
  14. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999). [CrossRef]
  15. T. Q. Jia, H. Y. Sun, X. X. Li, D. H. Feng, C. B. Li, S. Z. Xu, R. X. Li, Z. Z. Xu, and H. Kuroda, J. Appl. Phys. 100, 023103 (2006). [CrossRef]
  16. D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, J. Appl. Phys. 107, 013519 (2010). [CrossRef]
  17. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 15, 5674 (2007). [CrossRef]
  18. L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, Appl. Phys. Lett. 97, 051112 (2010). [CrossRef]
  19. F. Billard, “Métrologie de l'indice non-linéaire dans les verres en régime nanoseconde, picoseconde et sub-picoseconde,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille III, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited