OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2322–2325

Confocal polarization imaging in high-numerical-aperture space

C. Macias-Romero, M. R. Foreman, P. R. T. Munro, and P. Török  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2322-2325 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we describe theoretical and experimental physical aspects of high-resolution imaging polarimetry and its application to polarization-multiplexed encoding. We theoretically demonstrate that it is possible to resolve the orientation of two fixed dipole-like emitters placed significantly below the resolution limit if their emission is uncorrelated. Furthermore, we experimentally demonstrate this phenomenon by illuminating closely spaced asymmetric nanopits with unpolarized light and subsequently determining their individual orientation and position from the measured spatial distributions of the azimuth angle of the polarization and degree of polarization, respectively. Reduction of the optical resolution of the imaging system is also shown to only weakly affect resolution obtainable via polarization measurements.

© 2014 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(210.0210) Optical data storage : Optical data storage
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

Original Manuscript: November 28, 2013
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 11, 2014
Published: April 8, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

C. Macias-Romero, M. R. Foreman, P. R. T. Munro, and P. Török, "Confocal polarization imaging in high-numerical-aperture space," Opt. Lett. 39, 2322-2325 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 1st ed. (Elsevier, 1987), p. 539.
  2. A. De Martino, S. Ben Hatit, and M. Foldyna, Proc. SPIE 6518, 65180X (2007). [CrossRef]
  3. O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, Phys. Rev. Lett. 104, 253601 (2010). [CrossRef]
  4. K. Lindfors, T. Setälä, M. Kaivola, A. T. Friberg, and T. Seta, J. Opt. Soc. Am. A 22, 561 (2005). [CrossRef]
  5. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Cambridge University, 1999), p. 952.
  6. P. Török, P. Higdon, and T. Wilson, Opt. Commun. 148, 300 (1998). [CrossRef]
  7. C. Macias-Romero, M. R. Foreman, and P. Török, Opt. Express 19, 25066 (2011). [CrossRef]
  8. J. M. Bueno and M. C. W. Campbell, Opt. Lett. 27, 830 (2002). [CrossRef]
  9. D. Lara and C. Dainty, Opt. Lett. 30, 2879 (2005). [CrossRef]
  10. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, Appl. Opt. 45, 5453 (2006). [CrossRef]
  11. C. Macías-Romero, R. Lim, M. R. Foreman, and P. Török, Opt. Lett. 36, 1638 (2011). [CrossRef]
  12. W. Urbaczyk, Opt. Acta 33, 53 (1986). [CrossRef]
  13. J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).
  14. P. Török, P. Munro, and E. Kriezis, Opt. Express 16, 507 (2008). [CrossRef]
  15. D. Goldstein, Polarized Light, 3rd ed. (Taylor & Francis, 2011), p. 770.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited