OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2386–2389

Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture

Aijun Wang, Wenfang Liu, Junjie Tang, Sheng-Li Chen, and Peng Dong  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2386-2389 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic bandgap (PBG) extension of surface-disordered 3D photonic crystals (PCs) based on the TiO2 inverse opal (TiO2-IO) architecture has been demonstrated. By using a liquid phase deposition (LPD) process based on the controlled hydrolysis of ammonium hexafluorotitanate and boric acid, an extra layer of TiO2 nanoparticles were deposited onto the internal surface of the air voids in the TiO2-IOs to increase their surface roughness, thereby introducing surface disorder in the 3D order structures. The PBG relative width of surface-disordered TiO2-IOs has been broadened significantly, and, compared to the original TiO2-IO, its largest rate of increase (27%) has been obtained. It was found that the PBG relative width increased rapidly at first and then to a much slower rate of change with increase of the duration of the LPD time. A possible cause for this finding is discussed in this Letter.

© 2014 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(050.5298) Diffraction and gratings : Photonic crystals
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Diffraction and Gratings

Original Manuscript: January 13, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: March 19, 2014
Published: April 9, 2014

Aijun Wang, Wenfang Liu, Junjie Tang, Sheng-Li Chen, and Peng Dong, "Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture," Opt. Lett. 39, 2386-2389 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). [CrossRef]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987). [CrossRef]
  3. X. Gu, X. F. Chen, Y. P. Chen, X. L. Zheng, Y. X. Xia, and Y. L. Chen, Opt. Commun. 237, 53 (2004). [CrossRef]
  4. H. Takeda and K. Yoshino, Phys. Rev. E 69, 016605 (2004). [CrossRef]
  5. N. Tsurumachi, M. Abe, and M. Arakawa, Jpn. J. Appl. Phys. 38, L1400 (1999). [CrossRef]
  6. J. A. Monsoriu, C. J. Zapata-Rodriguez, E. Silvestre, and W. D. Furlan, Opt. Commun. 252, 46 (2005). [CrossRef]
  7. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. Frank, J. Am. Chem. Soc. 125, 6306 (2003). [CrossRef]
  8. C. M. Anderson and K. P. Giapis, Phys. Rev. B 56, 7313 (1997). [CrossRef]
  9. Z. Y. Li, B. Y. Gu, and G. Z. Yang, Phys. Rev. Lett. 81, 2574 (1998). [CrossRef]
  10. N. Susa, J. Appl. Phys. 91, 3501 (2002). [CrossRef]
  11. P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, Adv. Mater. 13, 389 (2001). [CrossRef]
  12. Q. F. Yan, L. K. The, Q. Shao, C. C. Wong, and Y. M. Chiang, Langmuir 24, 1796 (2008). [CrossRef]
  13. M. Qiu and S. He, J. Opt. Soc. Am. B 17, 1027 (2000). [CrossRef]
  14. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, Phys. Rev. B 48, 14121 (1993). [CrossRef]
  15. J. M. Frigerio, J. Rivory, and P. Sheng, Opt. Commun. 98, 231 (1993). [CrossRef]
  16. D. Zhang, W. Hu, Y. Zhang, Z. Li, B. Cheng, and G. Yang, Phys. Rev. B 50, 9810 (1994). [CrossRef]
  17. D. Zhang, Z. Li, W. Hu, and B. Cheng, Appl. Phys. Lett. 67, 2431 (1995). [CrossRef]
  18. D. Zhang, Z. Li, and B. Cheng, Acta Phys. Sinica 6, 372 (1997).
  19. H. Q. Li, G. C. Gu, H. Chen, and S. Y. Zhu, Appl. Phys. Lett. 75, 3261 (1999). [CrossRef]
  20. H. Li, H. Chen, and X. Qiu, Physica B 279, 164 (2000). [CrossRef]
  21. P. Han and H. Z. Wang, J. Opt. Soc. Am. B 20, 1996 (2003). [CrossRef]
  22. V. A. Tolmachev, T. S. Perova, J. A. Pilyugina, and R. A. Moore, Opt. Commun. 259, 104 (2006). [CrossRef]
  23. H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, J. Mater. Chem. 8, 2019 (1998). [CrossRef]
  24. J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, J. Phys. Chem. B 107, 13871 (2003). [CrossRef]
  25. S. Nishimura, A. Shishido, N. Abrams, and T. E. Mallouk, Appl. Phys. Lett. 81, 4532 (2002). [CrossRef]
  26. A. J. Wang, S.-L. Chen, and P. Dong, Mater. Lett. 63, 1586 (2009). [CrossRef]
  27. A. J. Wang, S.-L. Chen, P. Dong, and Z. Zhou, Synth. Met. 161, 504 (2011). [CrossRef]
  28. E. Graugnard, J. S. King, D. P. Gaillot, and C. J. Summers, Adv. Funct. Mater. 16, 1187 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited