OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2419–2422

Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique

Tuan A. Nguyen, Erwin H. W. Chan, and Robert A. Minasian  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2419-2422 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new microwave photonic instantaneous frequency measurement system that can simultaneously measure multiple-frequency signals while achieving very high resolution and wide frequency measurement range is presented. It is based on the frequency-to-time mapping technique implemented using a frequency shifting recirculating delay line loop and a narrowband optical filter realized by the in-fiber stimulated Brillouin scattering effect. Experimental results demonstrate the realization of a multiple-frequency measurement capability over a frequency range of 0.1–20 GHz that can be extended to 90 GHz, and with a measurement resolution of 250 MHz.

© 2014 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(290.5900) Scattering : Scattering, stimulated Brillouin
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 21, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 17, 2014
Published: April 10, 2014

Tuan A. Nguyen, Erwin H. W. Chan, and Robert A. Minasian, "Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique," Opt. Lett. 39, 2419-2422 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Y. Tsui, Microwave Receivers with Electronic Warfare Applications (Wiley, 1986).
  2. Specifications IFM receivers 0.5–18.0  GHz, Wide Band Systems, Inc.
  3. R. A. Minasian, E. H. W. Chan, and X. Yi, Opt. Express 21, 22918 (2013). [CrossRef]
  4. L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006). [CrossRef]
  5. X. H. Zou, S. L. Pan, and J. Yao, J. Lightwave Technol. 27, 5314 (2009). [CrossRef]
  6. W. Li, N. H. Zhu, and L. X. Wang, Opt. Lett. 37, 166 (2012). [CrossRef]
  7. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, Opt. Lett. 34, 3794 (2009). [CrossRef]
  8. S. Zheng, S. Ge, X. Zhang, H. Chi, and X. Jin, IEEE Photon. Technol. Lett. 24, 1115 (2012). [CrossRef]
  9. Y. Xiao, J. Guo, K. Wu, W. Dong, P. Qu, X. Zhang, S. Ruan, and W. Chen, Opt. Express 21, 31740 (2013). [CrossRef]
  10. B. Vidal, T. Mengual, and J. Marti, IEEE Trans. Microw. Theory Tech. 58, 3103 (2010). [CrossRef]
  11. H. Emami, N. Sarkhosh, and M. Ashourian, Appl. Opt. 52, 5508 (2013). [CrossRef]
  12. L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009). [CrossRef]
  13. H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, Opt. Lett. 38, 136 (2013). [CrossRef]
  14. A. R. Chraplyvy and R. W. Tkach, Electron. Lett. 22, 1084 (1986). [CrossRef]
  15. T. Tanemura, Y. Takushima, and K. Kikuchi, Opt. Lett. 27, 1552 (2002). [CrossRef]
  16. E. H. W. Chan and R. A. Minasian, Opt. Laser Technol. 45, 160 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited