OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2447–2450

High-efficiency dual-absorption InGaAs/InP photodetector incorporating GaAs/AlGaAs Bragg reflectors

Xiaofeng Duan, Yongqing Huang, Yufeng Shang, Jun Wang, and Xiaomin Ren  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2447-2450 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A reflection-enhanced dual-absorption InP-PIN/GaAs-DBR photodetector was fabricated and characterized. The photodetector is monolithically integrated using a heteroepitaxy growth of an InGaAs/InP dual-absorption “PINIP” structure on the GaAs/AlGaAs Bragg reflectors. These features lead to an increase in quantum efficiency over a wide wavelength range while maintaining a high speed. The measured quantum efficiency was increased by 48.8% in comparison with that without reflectors. A quantum efficiency of 64% at a wavelength of 1522 nm and a 3 dB bandwidth of 26 GHz at a reverse bias of 3 V were simultaneously obtained in the device.

© 2014 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(230.3120) Optical devices : Integrated optics devices
(230.5160) Optical devices : Photodetectors

ToC Category:

Original Manuscript: February 20, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 17, 2014
Published: April 11, 2014

Xiaofeng Duan, Yongqing Huang, Yufeng Shang, Jun Wang, and Xiaomin Ren, "High-efficiency dual-absorption InGaAs/InP photodetector incorporating GaAs/AlGaAs Bragg reflectors," Opt. Lett. 39, 2447-2450 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Beling and J. C. Campbell, J. Lightwave Technol. 27, 343 (2009). [CrossRef]
  2. D. Feng, W. Qian, H. Liang, B. J. Luff, and M. Asghari, IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013). [CrossRef]
  3. H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, Electron. Lett. 40, 388 (2004). [CrossRef]
  4. M. S. Ünlü and S. Strite, J. Appl. Phys. 78, 607 (1995). [CrossRef]
  5. X. Ren and J. C. Campbell, IEEE J. Quantum Electron. 32, 1903 (1996). [CrossRef]
  6. K. Liu, Y. Huang, and X. Ren, Appl. Opt. 39, 4263 (2000). [CrossRef]
  7. X. Duan, Y. Huang, X. Ren, W. Wang, H. Huang, Q. Wang, and S. Cai, IEEE Trans. Electron. Devices 58, 3948 (2011). [CrossRef]
  8. H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, Q. Wang, and Y. Huang, Appl. Opt. 45, 8448 (2006). [CrossRef]
  9. X. Duan, Y. Huang, X. Ren, Y. Shang, X. Fan, and F. Hu, IEEE Photon. Technol. Lett. 24, 863 (2012). [CrossRef]
  10. R. Sankaralingam and P. Fay, IEEE Photon. Technol. Lett. 17, 1513 (2005). [CrossRef]
  11. B. Liang, D. Chen, B. Wang, T. A. Kwasniewski, and Z. Wang, IEEE Trans. Electron Devices 57, 361 (2010). [CrossRef]
  12. T. Shi, B. Xiong, C. Sun, and Y. Luo, IEEE Photon. Technol. Lett. 25, 136 (2013). [CrossRef]
  13. A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, Electron. Lett. 27, 2125 (1991). [CrossRef]
  14. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007). [CrossRef]
  15. X. Duan, Y. Huang, X. Ren, H. Huang, S. Xie, Q. Wang, and S. Cai, Opt. Express 18, 5879 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited