OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2530–2533

Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution

Davide Grassani, Matteo Galli, and Daniele Bajoni  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2530-2533 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the active stabilization of a Michelson interferometer at an arbitrary phase angle with a precision better than 1° at λ=632.8nm, which corresponds to a precision in the optical path difference between the two arms of less than 1 nm. The stabilization method is ditherless, and the error signal is computed from the spatial shift of the interference pattern of a reference laser, measured in real-time with a CCD array detector. We discuss the usefulness of this method for nanopositioning, optical interferometry, and quantum optical experiments.

© 2014 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(260.3160) Physical optics : Interference

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 30, 2013
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 9, 2014
Published: April 15, 2014

Davide Grassani, Matteo Galli, and Daniele Bajoni, "Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution," Opt. Lett. 39, 2530-2533 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Frejlich, L. Cescato, and G. F. Mendes, Appl. Opt. 27, 1967 (1988). [CrossRef]
  2. M. C. Barbosa, I. de Oliveira, and J. Frejlich, Opt. Commun. 201, 293 (2002). [CrossRef]
  3. A. A. Freschi, E. A. Barbosa, and J. Frejlich, Opt. Lett. 20, 2027 (1995). [CrossRef]
  4. H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, Phys. Rev. E 68, 026604 (2003). [CrossRef]
  5. A. H. Gnauck and P. J. Winzer, J. Lightwave Technol. 23, 115 (2005). [CrossRef]
  6. H. Martin and X. Jiang, Opt. Lett. 35, 655 (2010). [CrossRef]
  7. D. T. Smithey, M. Beck, and M. G. Raymer, Phys. Rev. Lett. 70, 1244 (1993). [CrossRef]
  8. S.-B. Cho and T.-G. Noh, Opt. Express 17, 1902 (2009). [CrossRef]
  9. G. B. Xavier and J. P. von der Weid, Opt. Lett. 36, 1764 (2011). [CrossRef]
  10. I. Marikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, Phys. Rev. A 66, 062308 (2002). [CrossRef]
  11. M. Totzeck, W. Ulrich, A. Göhnermeier, and W. Kaiser, Nat. Photonics 1, 629 (2007). [CrossRef]
  12. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, Appl. Opt. 19, 2926 (1980). [CrossRef]
  13. M. B. Gray, D. E. McClelland, M. Barton, and S. Kawamura, Opt. Quantum Electron. 31, 571 (1999). [CrossRef]
  14. A. A. Freschi and J. Frejlich, Opt. Lett. 20, 635 (1995). [CrossRef]
  15. V. V. Krishnamachari, E. R. Andresen, S. R. Keiding, and E. O. Potma, Opt. Express 14, 5210 (2006). [CrossRef]
  16. G. Jotzu, T. Bartley, H. B. Coldenstrod-Ronge, B. J. Smith, and I. A. Walmsey, J. Modern Opt. 59, 42 (2011).
  17. J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, P. H. Lee, and A. Javan, Appl. Opt. 20, 736 (1981). [CrossRef]
  18. Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 146, 062308 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited