OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 9 — May. 1, 2014
  • pp: 2603–2606

Impact of dispersive and saturable gain/loss on bistability of nonlinear parity–time Bragg gratings

Sendy Phang, Ana Vukovic, Hadi Susanto, Trevor M. Benson, and Phillip Sewell  »View Author Affiliations


Optics Letters, Vol. 39, Issue 9, pp. 2603-2606 (2014)
http://dx.doi.org/10.1364/OL.39.002603


View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the impact of realistic gain and loss models on the bistable operation of nonlinear parity–time (PT) Bragg gratings. In our model we include both dispersive and saturable gain and show that levels of gain/loss saturation can have a significant impact on the bistable operation of a nonlinear PT Bragg grating based on GaAs material. The hysteresis of the nonlinear PT Bragg grating is analyzed for different levels of gain and loss and different saturation levels. We show that high saturation levels can improve the nonlinear operation by reducing the intensity at which the bistability occurs. However, when the saturation intensity is low, saturation inhibits the PT characteristics of the grating.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.1450) Nonlinear optics : Bistability
(250.4480) Optoelectronics : Optical amplifiers

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 17, 2014
Revised Manuscript: March 25, 2014
Manuscript Accepted: March 25, 2014
Published: April 21, 2014

Citation
Sendy Phang, Ana Vukovic, Hadi Susanto, Trevor M. Benson, and Phillip Sewell, "Impact of dispersive and saturable gain/loss on bistability of nonlinear parity–time Bragg gratings," Opt. Lett. 39, 2603-2606 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-9-2603


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Bender, S. Boettcher, P. N. Meisinger, J. Math. Phys. 40, 2201 (1999). [CrossRef]
  2. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011). [CrossRef]
  3. M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, D. V. Plant, Opt. Express 13, 3068 (2005). [CrossRef]
  4. S. Phang, A. Vukovic, H. Susanto, T. M. Benson, P. Sewell, J. Opt. Soc. Am. B 30, 2984 (2013). [CrossRef]
  5. M. Greenberg, M. Orenstein, Opt. Express 12, 4013 (2004). [CrossRef]
  6. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani, Opt. Lett. 32, 2632 (2007). [CrossRef]
  7. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, U. Peschel, Nature 488, 167 (2012). [CrossRef]
  8. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Phys. Rev. Lett. 100, 103904 (2008). [CrossRef]
  9. H. Ramezani, T. Kottos, R. El-Ganainy, D. N. Christodoulides, Phys. Rev. A 82, 043803 (2010). [CrossRef]
  10. A. A. Sukhorukov, Z. Xu, Y. S. Kivshar, Phys. Rev. A 82, 043818 (2010). [CrossRef]
  11. F. Nazari, M. Nazari, M. K. Moravvej-Farshi, Opt. Lett. 36, 4368 (2011). [CrossRef]
  12. L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, A. Scherer, Nat. Mater. 12, 108 (2013). [CrossRef]
  13. M. Kulishov, B. Kress, R. Slavík, Opt. Express 21, 9473 (2013). [CrossRef]
  14. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010). [CrossRef]
  15. J. Čtyroký, V. Kuzmiak, S. Eyderman, Opt. Express 18, 21585 (2010). [CrossRef]
  16. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, H. Renner, Nat. Photonics 7, 579 (2013). [CrossRef]
  17. Z. Musslimani, K. Makris, R. El-Ganainy, D. N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008). [CrossRef]
  18. C. Christopoulos, The Transmission-Line Modeling Method: TLM (IEEE, 1995).
  19. M. Krumpholz, C. Huber, P. Russer, IEEE Trans. Microwave Theor. Tech. 43, 1935 (1995). [CrossRef]
  20. V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, T. M. Benson, Opt. Quantum Electron. 37, 3 (2005). [CrossRef]
  21. S. C. Hagness, R. M. Joseph, A. Taflove, Radio Sci. 31, 931 (1996). [CrossRef]
  22. M. Bass, G. Li, E. van Stryland, Handbook of Optics, 3rd ed. (McGraw-Hill, 2010), Vol. 4.
  23. S. Adachi, J. Appl. Phys. 66, 6030 (1989). [CrossRef]
  24. S. Lan, A. V. Gopal, K. Kanamoto, H. Ishikawa, Appl. Phys. Lett. 84, 5124 (2004). [CrossRef]
  25. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991).
  26. A. Suryanto, E. van Groesen, M. Hammer, H. J. W. M. Hoekstra, Opt. Quantum Electron. 35, 313 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited