OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 9 — May. 1, 2014
  • pp: 2668–2671

Thermal effects on sudden changes and freezing of correlations between remote atoms in a cavity quantum electrodynamics network

Vitalie Eremeev, Nellu Ciobanu, and Miguel Orszag  »View Author Affiliations

Optics Letters, Vol. 39, Issue 9, pp. 2668-2671 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate thermal effects on sudden changes and freezing of the quantum and classical correlations of remote qubits in a cavity quantum electrodynamics (CQED) network with losses. We find that the detrimental effect of thermal reservoirs on the freezing of correlations can be compensated via an efficient coupling of the fiber connecting the two cavities of the system. Furthermore, for certain initial conditions, we find a double sudden transition in the dynamics of Bures geometrical quantum discord. The second transition tends to disappear at a critical temperature, hence freezing the discord. Finally, we discuss the feasibility of the experimental realization of the present proposal.

© 2014 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: February 17, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 1, 2014
Published: April 23, 2014

Vitalie Eremeev, Nellu Ciobanu, and Miguel Orszag, "Thermal effects on sudden changes and freezing of correlations between remote atoms in a cavity quantum electrodynamics network," Opt. Lett. 39, 2668-2671 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001). [CrossRef]
  3. H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2002). [CrossRef]
  4. D. Spehner and M. Orszag, New J. Phys. 15, 103001 (2013). [CrossRef]
  5. D. Spehner and M. Orszag, J. Phys. A 47, 035302 (2014). [CrossRef]
  6. B. Aaronson, R. L. Franco, and G. Adesso, Phys. Rev. A 88, 012120 (2013). [CrossRef]
  7. J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, Phys. Rev. A 80, 044102 (2009). [CrossRef]
  8. L. Mazzola, J. Piilo, and S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010). [CrossRef]
  9. J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, and G.-C. Guo, Nat. Commun. 1, 7 (2010).
  10. J.-S. Xu, K. Sun, C.-F. Li, X.-Y. Xu, G.-C. Guo, E. Andersson, R. Lo Franco, and G. Compagno, Nat. Commun. 4, 2851 (2013).
  11. R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Phys. Rev. Lett. 107, 140403 (2011). [CrossRef]
  12. J. P. G. Pinto, G. Karpat, and F. F. Fanchini, Phys. Rev. A 88, 034304 (2013). [CrossRef]
  13. Q.-L. He, J.-B. Xu, D. X. Yao, and Y. Q. Zhang, Phys. Rev. A 84, 022312 (2011). [CrossRef]
  14. Q. L. He and J.-B. Xu, J. Opt. Soc. Am. B 30, 251 (2013). [CrossRef]
  15. B. You and L.-X. Cen, Phys. Rev. A 86, 012102 (2012). [CrossRef]
  16. R. Lo Franco, B. Bellomo, E. Andersson, and G. Compagno, Phys. Rev. A 85, 032318 (2012). [CrossRef]
  17. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997). [CrossRef]
  18. T. Pellizzari, Phys. Rev. Lett. 79, 5242 (1997). [CrossRef]
  19. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, Nature 484, 195 (2012). [CrossRef]
  20. A. Serafini, S. Mancini, and S. Bose, Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  21. L.-T. Shen, Z.-B. Yang, H.-Z. Wu, X.-Y. Chen, and S.-B. Zheng, J. Opt. Soc. Am. B 29, 2379 (2012). [CrossRef]
  22. S. Liu, J. Li, R. Yu, and Y. Wu, Phys. Rev. A 87, 062316 (2013). [CrossRef]
  23. Z.-D. Hu and J.-B. Xu, Opt. Lett. 38, 3639 (2013). [CrossRef]
  24. R. Coto and M. Orszag, J. Phys. B 46, 175503 (2013). [CrossRef]
  25. R. Coto and M. Orszag, “Determination of the maximum global quantum discord via measurements of excitations in a cavity QED network,” J. Phys. B, arXiv:1401.2934 (to be published).
  26. V. Montenegro and M. Orszag, J. Phys. B 44, 154019 (2011). [CrossRef]
  27. V. Eremeev, V. Montenegro, and M. Orszag, Phys. Rev. A 85, 032315 (2012). [CrossRef]
  28. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).
  29. M. Scala, B. Militello, A. Messina, J. Piilo, and S. Maniscalco, Phys. Rev. A 75, 013811 (2007). [CrossRef]
  30. S. Luo, Phys. Rev. A 77, 042303 (2008). [CrossRef]
  31. F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, Phys. Rev. A 81, 052107 (2010). [CrossRef]
  32. Y. Huang, Phys. Rev. A 88, 014302 (2013). [CrossRef]
  33. S. Haroche and J. M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University, 2006).
  34. J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, Phys. Rev. A 87, 042115 (2013). [CrossRef]
  35. F. M. Paula, I. A. Silva, J. D. Montealegre, A. M. Souza, E. R. deAzevedo, R. S. Sarthour, A. Saguia, I. S. Oliveira, D. O. Soares-Pinto, G. Adesso, and M. S. Sarandy, Phys. Rev. Lett. 111, 250401 (2013). [CrossRef]
  36. T. Werlang, C. Trippe, G. A. P. Ribeiro, and G. Rigolin, Phys. Rev. Lett. 105, 095702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited