OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 9 — May. 1, 2014
  • pp: 2731–2734

Difference of two Gaussian Schell-model cross-spectral densities

Franco Gori and Massimo Santarsiero  »View Author Affiliations

Optics Letters, Vol. 39, Issue 9, pp. 2731-2734 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a number of results relating to the difference of two Gaussian Schell-model cross-spectral densities (CSDs). They allow us to specify conditions under which such a difference represents itself in a valid CSD. In particular, a sufficient condition is derived for the non-negative definiteness of the resulting CSD, for any admissible choice of the involved parameters, while a necessary and sufficient condition is obtained for the case of CSDs endowed with the property of being shape-invariant upon propagation.

© 2014 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes

ToC Category:
Coherence and Statistical Optics

Original Manuscript: March 11, 2014
Revised Manuscript: April 3, 2014
Manuscript Accepted: April 3, 2014
Published: April 28, 2014

Franco Gori and Massimo Santarsiero, "Difference of two Gaussian Schell-model cross-spectral densities," Opt. Lett. 39, 2731-2734 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  3. F. Gori and M. Santarsiero, Opt. Lett. 32, 3531 (2007). [CrossRef]
  4. J. Turunen and P. Vahimaa, Opt. Express 16, 6433 (2008). [CrossRef]
  5. V. Torres-Company, A. Valencia, and J. P. Torres, Opt. Lett. 34, 1177 (2009). [CrossRef]
  6. J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, J. Opt. Soc. Am. A 27, 2004 (2010). [CrossRef]
  7. J. Turunen and A. T. Friberg, Progress in Optics, E. Wolf, ed. (Elsevier, 2009), Vol. 54, pp. 1–88.
  8. R. Zhang, X. Wang, X. Cheng, and Z. Qiu, J. Opt. Soc. Am. A 27, 2496 (2010). [CrossRef]
  9. H. Lajunen and T. Saastamoinen, Opt. Lett. 36, 4104 (2011). [CrossRef]
  10. Z. Tong and O. Korotkova, Opt. Lett. 37, 3240 (2012). [CrossRef]
  11. O. Korotkova, S. Sahin, and E. Shchepakina, J. Opt. Soc. Am. A 29, 2159 (2012). [CrossRef]
  12. Z. Mei and O. Korotkova, Opt. Lett. 38, 91 (2013). [CrossRef]
  13. H. Lajunen and T. Saastamoinen, Opt. Express 21, 190 (2013). [CrossRef]
  14. C. R. Fernández-Pousa, Opt. Express 21, 9390 (2013). [CrossRef]
  15. Y. Zhang, L. Liu, C. Zhao, and Y. Cai, Phys. Lett. A 378, 750 (2014). [CrossRef]
  16. Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, and O. Korotkova, Phys. Rev. A 89, 013801 (2014). [CrossRef]
  17. M. Santarsiero, G. Piquero, J. C. G. de Sande, and F. Gori, Opt. Lett. 39, 1713 (2014). [CrossRef]
  18. F. Riesz and B. Szőkefalvi-Nagy, Functional Analysis (Blackie and Sons, 1956).
  19. F. Gori, V. Ramirez-Sanchez, M. Santarsiero, and T. Shirai, J. Opt. A 11, 085706 (2009). [CrossRef]
  20. F. Gori, Opt. Commun. 46, 149 (1983). [CrossRef]
  21. E. Wolf, J. Opt. Soc. Am. 72, 343 (1982). [CrossRef]
  22. F. Gori, Opt. Commun. 34, 301 (1980). [CrossRef]
  23. A. Starikov and E. Wolf, J. Opt. Soc. Am. 72, 923 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited