OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 9 — May. 1, 2014
  • pp: 2735–2738

Adjustable pulse compression scheme for generation of few-cycle pulses in the midinfrared

Ayhan Demircan, Shalva Amiranashvili, Carsten Brée, Uwe Morgner, and Günter Steinmeyer  »View Author Affiliations

Optics Letters, Vol. 39, Issue 9, pp. 2735-2738 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (555 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel adjustable adiabatic soliton compression scheme is presented, enabling a coherent pulse source with pedestal-free, few-cycle pulses in the infrared or midinfrared regime. This scheme relies on interaction of a dispersive wave and a soliton copropagating at nearly identical group velocities in a fiber with enhanced infrared transmission. The compression is achieved directly in one stage, without the necessity of an external compensation scheme. Numerical simulations are employed to demonstrate this scheme for silica and fluoride fibers, indicating ultimate limitations as well as the possibility of compression down to the single-cycle regime. Such output pulses appear to be ideally suited as seed sources for parametric amplification schemes in the midinfrared.

© 2014 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5520) Ultrafast optics : Pulse compression
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Ultrafast Optics

Original Manuscript: January 31, 2014
Revised Manuscript: March 29, 2014
Manuscript Accepted: March 30, 2014
Published: April 28, 2014

Ayhan Demircan, Shalva Amiranashvili, Carsten Brée, Uwe Morgner, and Günter Steinmeyer, "Adjustable pulse compression scheme for generation of few-cycle pulses in the midinfrared," Opt. Lett. 39, 2735-2738 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, New J. Phys. 9, 242 (2007). [CrossRef]
  2. G. Steinmeyer and G. Stibenz, Appl. Phys. B 82, 175 (2006). [CrossRef]
  3. E. Matsubara, K. Yamane, T. Sekikawa, and M. Yamashita, J. Opt. Soc. Am. B 24, 985 (2007). [CrossRef]
  4. A. Wirth, M. T. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, Science 334, 195 (2011). [CrossRef]
  5. J. A. Cox, W. P. Putnam, A. Sell, A. Leitenstorfer, and F. X. Kärtner, Opt. Lett. 37, 3579 (2012). [CrossRef]
  6. D. You, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, Opt. Lett. 18, 290 (1993). [CrossRef]
  7. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, Opt. Lett. 37, 3891 (2012). [CrossRef]
  8. C. Manzoni, S.-W. Huang, G. Cirmi, P. Farinello, J. Moses, F. X. Kärtner, and G. Cerullo, Opt. Lett. 37, 1880 (2012). [CrossRef]
  9. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, J. Opt. Soc. Am. B 18, 1307 (2001). [CrossRef]
  10. D. V. Skryabin and A. V. Yulin, Phys. Rev. E 72, 016619 (2005). [CrossRef]
  11. D. V. Skryabin and A. V. Gorbach, Rev. Mod. Phys. 82, 1287 (2010). [CrossRef]
  12. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, Science 319, 1367 (2008). [CrossRef]
  13. D. Faccio, Contemp. Phys. 53, 97 (2012).
  14. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, Phys. Rev. Lett. 106, 163901 (2011). [CrossRef]
  15. R. Driben, F. Mitschke, and N. Zhavoronkov, Opt. Express 18, 25993 (2010).
  16. A. Demircan, Sh. Amiranashvili, C. Brée, and G. Steinmeyer, Phys. Rev. Lett. 110, 233901 (2013). [CrossRef]
  17. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012). [CrossRef]
  18. Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. Voronin, A. Zheltikov, and T. Fuji, Opt. Express 20, 24741 (2012). [CrossRef]
  19. H. Suchowski, P. R. Krogen, S. W. Huang, F. X. Kärtner, and J. Moses, Opt. Express 21, 28892 (2013). [CrossRef]
  20. M. Bache, H. Guo, and B. Zhou, Opt. Mater. Express 3, 1647 (2013). [CrossRef]
  21. Sh. Amiranashvili and A. Demircan, Phys. Rev. A 82, 013812 (2010). [CrossRef]
  22. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  23. J. M. Stone and J. C. Knight, Opt. Express 16, 2670 (2008). [CrossRef]
  24. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngso, C. L. Thomsen, J. Thogersen, S. R. Keiding, and O. Bang, J. Opt. Soc. Am. B 29, 635 (2012). [CrossRef]
  25. A. Demircan, Sh. Amiranashvili, C. Brée, Ch. Mahnke, F. Mitschke, and G. Steinmeyer, Sci. Rep. 2, 850 (2012). [CrossRef]
  26. R. Driben and I. Babushkin, Opt. Lett. 37, 5157 (2012). [CrossRef]
  27. C. M. De Sterke, Opt. Lett. 17, 914 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited