OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 9 — May. 1, 2014
  • pp: 2790–2793

Laboratory x-ray fluorescence tomography for high-resolution nanoparticle bio-imaging

Hans M. Hertz, Jakob C. Larsson, Ulf Lundström, Daniel H. Larsson, and Carmen Vogt  »View Author Affiliations

Optics Letters, Vol. 39, Issue 9, pp. 2790-2793 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that nanoparticle x-ray fluorescence computed tomography in mouse-sized objects can be performed with very high spatial resolution at acceptable dose and exposure times with a compact laboratory system. The method relies on the combination of the 24 keV line-emission from a high-brightness liquid-metal-jet x-ray source, pencil-beam-forming x-ray optics, photon-counting energy-dispersive detection, and carefully matched (Mo) nanoparticles. Phantom experiments and simulations show that the arrangement significantly reduces Compton background and allows 100 μm detail imaging at dose and exposure times compatible with small-animal experiments. The method provides a possible path to in vivo molecular x-ray imaging at sub-100 μm resolution in mice.

© 2014 Optical Society of America

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(170.7440) Medical optics and biotechnology : X-ray imaging
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

Original Manuscript: February 5, 2014
Revised Manuscript: April 4, 2014
Manuscript Accepted: April 7, 2014
Published: April 30, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Hans M. Hertz, Jakob C. Larsson, Ulf Lundström, Daniel H. Larsson, and Carmen Vogt, "Laboratory x-ray fluorescence tomography for high-resolution nanoparticle bio-imaging," Opt. Lett. 39, 2790-2793 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, Br. J. Radiol. 79, 248 (2006). [CrossRef]
  2. O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, Nat. Mater. 5, 118 (2006). [CrossRef]
  3. M. Shilo, T. Reuveni, M. Motiei, and R. Popovtzer, Nanomedicin 7, 257 (2012). [CrossRef]
  4. W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, Nano Lett. 10, 2318 (2010). [CrossRef]
  5. J. F. Hainfeld, M. J. O’Conner, F. A. Dilmanian, D. N. Slatkin, D. N. Slatkin, and H. M. Smilowitz, Br. J. Radiol. 84, 526 (2011). [CrossRef]
  6. U. Lundström, D. Larsson, A. Burvall, P. A. C. Takman, L. Scott, H. Brismar, and H. M. Hertz, Phys. Med. Biol. 57, 2603 (2012). [CrossRef]
  7. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, Phys. Med. Biol. 49, N309 (2004). [CrossRef]
  8. R. Cesareo and S. Mascarenhas, Nucl. Instrum. Methods Phys. Res. A277, 669 (1989). [CrossRef]
  9. A. Simionovici, M. Chukalina, C. Schroer, M. Drakopoulos, A. Snigirev, I. Snigireva, B. Lengeler, K. Janssens, and F. Adams, IEEE Trans. Nucl. Sci. 47, 2736 (2000). [CrossRef]
  10. see, e.g., www.aps.anl.gov .
  11. S.-K. Cheong, B. L. Jones, A. K. Siddiqi, F. Liu, N. Manohar, and S. H. Cho, Phys. Med. Biol. 55, 647 (2010). [CrossRef]
  12. B. L. Jones, N. Manohar, F. Reynoso, A. Karellas, and S. H. Cho, Phys. Med. Biol. 57, N457 (2012). [CrossRef]
  13. M. Bazalova, Y. Kuang, G. Pratx, and L. Xing, IEEE Trans Med. Imaging 31, 1620 (2012). [CrossRef]
  14. G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, Opt. Lett. 35, 3345 (2010). [CrossRef]
  15. G. Schwarz, R. R. Mendel, and M. W. Ribbe, Nature 460, 839 (2009). [CrossRef]
  16. L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M.-C. Hofmann, Toxicol. Sci. 88, 412 (2005). [CrossRef]
  17. G. Hasegawa, M. Shimonaka, and Y. Ishihara, J. Appl. Toxicol. 32, 72 (2012). [CrossRef]
  18. B. Pelaz, S. Jaber, D. Jimenez de Aberasturi, V. Wulf, T. Aida, J. M. de la Fuente, J. Feldmann, H. E. Gaub, L. Josephson, C. R. Kagan, N. A. Kotov, L. M. Liz-Marzán, H. Mattoussi, P. Mulvaney, C. B. Murray, A. L. Rogach, P. S. Weiss, I. Willner, and W. J. Parak, ACS Nano 6, 8468 (2012). [CrossRef]
  19. J. Baró, J. Sempau, J. M. Fernández-Varea, and F. Salvat, Nucl. Instrum. Methods Phys. Res. Sect. B 100, 31 (1995). [CrossRef]
  20. J. H. Hubbell, P. N. Trehan, N. Singh, B. Chand, D. Mehta, M. L. Garg, R. R. Garg, S. Singh, and S. Puri, J. Phys. Chem. Ref. Data 23, 339 (1994). [CrossRef]
  21. J. H. Hubbell and S. M. Seltzer http://www.nist.gov/pml/data/xraycoef/index.cfm .
  22. C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, Phys. Med. Biol. 53, R319 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited