OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 9 — May. 1, 2014
  • pp: 2798–2801

Mode-coupling polarization rotator based on plasmonic waveguide

Lin Jin, Qin Chen, and Long Wen  »View Author Affiliations

Optics Letters, Vol. 39, Issue 9, pp. 2798-2801 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel polarization rotator (PR) based on mode coupling in plasmonic waveguides is demonstrated by simulation. A silicon waveguide with asymmetric claddings of silicon oxide and metal is applied to induce a hybridization of the polarization modes. Operating at the telecommunication wavelength of 1.55 μm, polarization conversion efficiency of 99.7% can be achieved in a device at a length of 9.7 μm with an insertion loss of 2.2 dB. This PR can be easily fabricated by oblique deposition of the claddings after etching the silicon waveguide without precise alignment for two-step lithography as required in a previous design.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

Original Manuscript: January 22, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: April 3, 2014
Published: April 30, 2014

Lin Jin, Qin Chen, and Long Wen, "Mode-coupling polarization rotator based on plasmonic waveguide," Opt. Lett. 39, 2798-2801 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top. Quantum Electron. 6, 317 (2000). [CrossRef]
  2. Y. G. Qin, Y. Yu, J. H. Zou, M. Y. Ye, L. Xiang, and X. L. Zhang, Opt. Express 21, 25727 (2013). [CrossRef]
  3. H. Keang-Po and J. M. Kahn, J. Lightwave Technol. 32, 614 (2014). [CrossRef]
  4. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007). [CrossRef]
  5. D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013). [CrossRef]
  6. V. P. Tzolov and M. Fontaine, Opt. Commun. 127, 7 (1996). [CrossRef]
  7. H. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, J. Lightwave Technol. 23, 432 (2005). [CrossRef]
  8. Z. C. Wang and D. X. Dai, J. Opt. Soc. Am. B 25, 747 (2008). [CrossRef]
  9. M. R. Watts and H. A. Haus, Opt. Lett. 30, 138 (2005). [CrossRef]
  10. J. N. Caspers, M. Z. Alam, and M. Mojahedi, Opt. Lett. 37, 4615 (2012). [CrossRef]
  11. Y. H. Fei, L. B. Zhang, T. T. Cao, Y. M. Cao, and S. W. Chen, IEEE Photon. Technol. Lett. 25, 879 (2013). [CrossRef]
  12. R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980). [CrossRef]
  13. H. Heidrich, P. Albrecht, M. Hamacher, H. P. Nolting, H. Schroeter-Janssen, and C. M. Weinert, IEEE Photon. Technol. Lett. 4, 34 (1992). [CrossRef]
  14. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012). [CrossRef]
  15. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, Opt. Express 16, 2628 (2008). [CrossRef]
  16. G. Chen, L. Chen, W. Ding, F. Sun, and R. Feng, Opt. Lett. 38, 1984 (2013). [CrossRef]
  17. L. F. Gao, Y. J. Huo, J. S. Harris, and Z. P. Zhou, IEEE Photon. Technol. Lett. 25, 2081 (2013). [CrossRef]
  18. J. Zhang, S. Y. Zhu, S. Y. Chen, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011). [CrossRef]
  19. M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 4, 707 (2012).
  20. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008). [CrossRef]
  21. L. Jin, Q. Chen, and S. C. Song, Opt. Lett. 38, 3078 (2013). [CrossRef]
  22. D. Correia, J. P. da Silva, and I. T. Lima, IEEE Photon. Technol. Lett. 15, 915 (2003). [CrossRef]
  23. http://www.lumerical.com .
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited