OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 9 — May. 1, 2014
  • pp: 2811–2814

Insights into complex Berenger modes: a view from the weighted optical path distance perspective

Haibo Liang, Jianwei Mu, Xun Li, and Wei-Ping Huang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 9, pp. 2811-2814 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple and efficient approach for higher-order Berenger mode computation. We establish the physical mapping between radiation modes and complex Berenger modes, and theoretically prove that the higher-order substrate Berenger modes and cladding Berenger modes can converge to a cluster of complex modes with the same phase angle. This model can be explained by weighted optical path distance in both cladding and substrate, and can be implemented by adjusting parameters of perfectly matched layers. A germanium (Ge) photodetector is utilized to evaluate the merits of this method in terms of robustness, efficiency, and accuracy.

© 2014 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(030.4070) Coherence and statistical optics : Modes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Optical Devices

Original Manuscript: February 25, 2014
Revised Manuscript: April 3, 2014
Manuscript Accepted: April 3, 2014
Published: April 30, 2014

Haibo Liang, Jianwei Mu, Xun Li, and Wei-Ping Huang, "Insights into complex Berenger modes: a view from the weighted optical path distance perspective," Opt. Lett. 39, 2811-2814 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Zhou, Y. Xia, H. Zhang, and F. Luan, Opt. Express 21, 8939 (2013). [CrossRef]
  2. Y. Li, L. Li, B. Tian, G. Roelkens, and R. Baets, IEEE Photon. Technol. Lett. 25, 1195 (2013). [CrossRef]
  3. C. L. Zou, F. J. Sun, Z. J. Gong, Z. F. Hang, and G. C. Guo, Opt. Express 21, 9982 (2013). [CrossRef]
  4. J. Mu and W. P. Huang, J. Lightwave Technol. 29, 997 (2011). [CrossRef]
  5. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, Opt. Express 15, 3916 (2007). [CrossRef]
  6. H. Derudder, F. Olyslager, D. De Zutter, and S. Van den Berghe, IEEE Trans. Antennas Propag. 49, 185 (2001). [CrossRef]
  7. H. Derudder, D. De Zutter, and F. Olyslager, Electron. Lett. 34, 2138 (1998). [CrossRef]
  8. P. Bienstman and R. Baets, Opt. Quantum Electron. 33, 327 (2001). [CrossRef]
  9. P. Bienstman, H. Derudder, R. Baets, F. Olyslager, and D. De Zutter, IEEE Trans. Microwave Theory Tech. 49, 349 (2001). [CrossRef]
  10. J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, and R. M. De La Rue, Opt. Quantum Electron. 34, 455 (2002).
  11. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  13. R. Sammut and A. W. Snyder, Appl. Opt. 15, 1040 (1976). [CrossRef]
  14. A. K. Ghatak, Opt. Quantum Electron. 17, 311 (1985). [CrossRef]
  15. S. L. Lee, Y. C. Chung, L. A. Coldren, and N. Dagli, IEEE J. Quantum Electron. 31, 1790 (1995). [CrossRef]
  16. J. Zhu and Y. Y. Lu, J. Lightwave Technol. 24, 1619 (2006). [CrossRef]
  17. H. Rogier and D. De Zutter, IEEE Trans. Microwave Theor. Tech. 49, 712 (2001). [CrossRef]
  18. H. Rogier and D. De Zutter, J. Lightwave Technol. 20, 1141 (2002). [CrossRef]
  19. J. Zhu and Y. Y. Lu, J. Opt. Soc. Am. A 30, 2090 (2013). [CrossRef]
  20. W. P. Huang and J. Mu, Opt. Express 17, 19134 (2009). [CrossRef]
  21. L. Yang, L. L. Xue, Y. C. Lu, and W. P. Huang, Opt. Express 18, 20595 (2010). [CrossRef]
  22. J. Mu and W. P. Huang, Opt. Express 16, 18152 (2008). [CrossRef]
  23. J. Mu, X. Li, and W. P. Huang, Opt. Express 18, 15893 (2010). [CrossRef]
  24. P. Benech, D. A. Khalil, and F. S. Andre, Opt. Commun. 88, 96 (1992). [CrossRef]
  25. J. Petracek and K. Singh, IEEE Photon. Technol. Lett. 14, 810 (2002). [CrossRef]
  26. A. Khalatpour, J. Mu, K. Moussakhani, and W. P. Huang, J. Lightwave Technol. 28, 2851 (2010). [CrossRef]
  27. W. C. Chew and W. H. Weedon, Microwave Opt. Technol. Lett. 7, 599 (1994). [CrossRef]
  28. W. C. Chew, J. M. Jin, and E. Michielssen, Microwave Opt. Technol. Lett. 15, 363 (1997). [CrossRef]
  29. Y. P. Chiou and C. H. Du, Opt. Express 18, 4088 (2010). [CrossRef]
  30. FDTD Solutions from Lumerical Solutions, Inc.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited