Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Proximity effect assisted absorption enhancement in thin film with locally clustered nanoholes

Not Accessible

Your library or personal account may give you access

Abstract

We focus on the light-trapping characteristics of a thin film with locally clustered nanoholes (NHs), considering that the clustering effect is usually encountered in preparing the nanostructures. Our full-wave finite-element simulation indicates that an intentionally introduced clustering effect could be employed for improving the light-trapping performance of the nanostructured thin film. For a 100 nm thick amorphous silicon film, an optimal clustering design with NH diameter of 100 nm is able to double the integrated optical absorption over the solar spectrum, compared to the planar counterpart, as well as show much improved optical performance over that of the nonclustered setup. A further insight into the underlying physics explains the outstanding light-trapping capability in terms of the increased available modes, a stronger power coupling efficiency, a higher fraction of electric field concentrated in absorbable material, and a higher density of photon states.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced optical absorption in nanohole-textured silicon thin-film solar cells with rear-located metal particles

Yankun Chen, Weihua Han, and Fuhua Yang
Opt. Lett. 38(19) 3973-3975 (2013)

Efficient broadband light absorption in elliptical nanohole arrays for photovoltaic application

Zihuan Xia, Xuefei Qin, Yonggang Wu, Yongdong Pan, Jian Zhou, and Zongyi Zhang
Opt. Lett. 40(24) 5814-5817 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved