Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable Q-factor silicon microring resonators for ultra-low power parametric processes

Not Accessible

Your library or personal account may give you access

Abstract

A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring resonator across the critical coupling point is demonstrated, exhibiting a Q-factor tunable between 9000 and 96,000. Consequently, resonantly enhanced four-wave mixing shows tunable efficiency between 40 and 16.3dB at an ultra-low on-chip pump power of 0.7 mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide

Yuguang Zhang, Xiao Hu, Daigao Chen, Lei Wang, Miaofeng Li, Peng Feng, Xi Xiao, and Shaohua Yu
Opt. Lett. 43(7) 1586-1589 (2018)

Ultra-low-power four-wave mixing wavelength conversion in high-Q chalcogenide microring resonators

Wei C. Jiang, Kangmei Li, Xin Gai, Daniel A. Nolan, and Paulo Dainese
Opt. Lett. 46(12) 2912-2915 (2021)

Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter

Carlos Errando-Herranz, Frank Niklaus, Göran Stemme, and Kristinn B. Gylfason
Opt. Lett. 40(15) 3556-3559 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved