Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Controllable near-field intensity and spot size of hybrid terahertz metamaterial

Not Accessible

Your library or personal account may give you access

Abstract

We report controllable near fields around split-ring resonator (SRR) gaps of an active terahertz metamaterial. As extension of parallel-plate capacitors, patterned VO2 is integrated into the metallic SRRs to manipulate the near-field intensity and hot spot size through its metal-insulator transition. This design enhances the device reliability by preventing VO2 dielectric breakdown at a strongly enhanced near field. The near-field intensity and spot size are tunable in broad ranges, and the device is demonstrated to be capable of compensating resonant frequency drift arisen from different interactions due to near-field coupling. It provides an effective method to actively manipulate the light-matter interaction through the strongly enhanced and tunable near fields.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Spot-size reduction in terahertz apertureless near-field imaging

P. C. M. Planken and N. C. J. van der Valk
Opt. Lett. 29(19) 2306-2308 (2004)

Near-infrared electro-optic modulator based on plasmonic graphene

Susbhan Das, Alessandro Salandrino, Judy Z. Wu, and Rongqing Hui
Opt. Lett. 40(7) 1516-1519 (2015)

Electrically controllable terahertz metamaterials with large tunabilities and low operating electric fields using electrowetting-on-dielectric cells

Harry Miyosi Silalahi, Yi-Hong Shih, Shih-Hung Lin, Yi-Ting Chen, Wan-Yi Wei, Pei-Ling Chao, and Chia-Yi Huang
Opt. Lett. 46(23) 5962-5965 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved