OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 5, Iss. 1 — Jan. 1, 1980
  • pp: 18–20

Observation of vibrational dependence in N2O quadrupole hyperfine structure utilizing a twin-laser spectrometer

J. E. Thomas, M. Burns, and A. Javan  »View Author Affiliations


Optics Letters, Vol. 5, Issue 1, pp. 18-20 (1980)
http://dx.doi.org/10.1364/OL.5.000018


View Full Text Article

Enhanced HTML    Acrobat PDF (417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Copropagating-beam Doppler-free resonances, observed in fluorescence, are utilized to study vibrational dependence of N2O quadrupole hyperfine structure for several transitions of the (100–001) band. A novel technique is applied to simplify the spectra by using a large intensity ratio for the beams.

© 1980 Optical Society of America

History
Original Manuscript: August 13, 1979
Published: January 1, 1980

Citation
J. E. Thomas, M. Burns, and A. Javan, "Observation of vibrational dependence in N2O quadrupole hyperfine structure utilizing a twin-laser spectrometer," Opt. Lett. 5, 18-20 (1980)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-5-1-18


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Freed, A. Javan, Appl. Phys. Lett. 17, 53 (1970). [CrossRef]
  2. J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Javan, J. Mol. Spectrosc. 64, 491 (1977). [CrossRef]
  3. M. J. Kelly, J. E. Thomas, J.-P. Monchalin, N. A. Kurnit, A. Javan, Phys. Rev. Lett. 37, 686 (1976). [CrossRef]
  4. J.-P. Monchalin, M. J. Kelly, J. E. Thomas, N. A. Kurnit, A. Szöke, A. Javan, Opt. Lett. 1, 5 (1977). [CrossRef] [PubMed]
  5. H. R. Schlossberg, A. Javan, Phys. Rev. 150, 267 (1966); Phys. Rev. Lett. 17, 1242 (1966). [CrossRef]
  6. M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969). [CrossRef]
  7. Copropagating-wave resonances depend only on the twin-laser difference frequency so long as w32 (u/c) ≪ linewidth, where w32 is the level spacing and u is the thermal speed.
  8. R. G. Brewer, Phys. Rev. Lett. 25, 1639 (1970). See also R. C. Brewer, “Nonlinear infrared spectroscopy,” in Fundamental and Applied Laser Physics, M. S. Feld, A. Javan, N. Kurnit, eds. (Wiley, New York, 1973). [CrossRef]
  9. M. Ouhayoun, C. J. Bordé, J. Bordé, Mol. Phys. 33, 597 (1977). [CrossRef]
  10. Note that the structure of N2O is NNO.
  11. N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).
  12. This follows from the hermiticity of the dipole operator.
  13. J. Bardeen, C. H. Townes, Phys. Rev. 73, 97 (1948). [CrossRef]
  14. It is assumed that the weak wave interacting with a strong transition is weakly saturating. For detailed theoretical analysis see J. E. Thomas, Ph.D. thesis, 1979 (unpublished).
  15. J. M. L. J. Reinartz, W. L. Meerts, A. Dymanus, Chem. Phys. 31, 19 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited