OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 6, Iss. 1 — Jan. 1, 1981
  • pp: 36–38

Spontaneous Raman scattering by ground-state oxygen atoms

Cameron J. Dasch and J. H. Bechtel  »View Author Affiliations

Optics Letters, Vol. 6, Issue 1, pp. 36-38 (1981)

View Full Text Article

Enhanced HTML    Acrobat PDF (431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first known observation of Raman scattering by oxygen atoms. The 3P23P1 and 3P23P0 transitions in the electronic ground state that produced Raman shifts of 158 and 227 cm−1 were detected. These transitions were observed in a fuel-lean atmospheric H2 + O2 flame. By comparing the O electronic and O2 pure-rotational Raman-scattering intensities, we measured the polarized cross sections for the two lines to be 6 ± 1 × 10−31 and 4 ± 1 × 10−31 cm2/sr, respectively, with an excitation source at 532.1 nm. These cross sections are two to three times stronger than those predicted by a single-configuration single-excitation Coulomb approximation.

© 1981 Optical Society of America

Original Manuscript: August 27, 1980
Published: January 1, 1981

Cameron J. Dasch and J. H. Bechtel, "Spontaneous Raman scattering by ground-state oxygen atoms," Opt. Lett. 6, 36-38 (1981)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Bechtel, “Temperature measurements of the hydroxyl radical and molecular nitrogen in premixed, laminar flames by laser techniques,” Appl. Opt. 18, 2100 (1979). [CrossRef] [PubMed]
  2. J. H. Bechtel, R. E. Teets, “Hydroxyl and its concentration profile in methane–air flames,” Appl. Opt. 18, 4138 (1979). [CrossRef] [PubMed]
  3. R. E. Teets, J. H. Bechtel, “Sensitivity analysis of a model for the radical recomination region of hydrocarbon–air flames,” in the Proceedings of the 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1980).
  4. J. H. Bechtel et al., “Atmospheric pressure, premixed hydrocarbon–air flames: theory and experiment,” Combust. Flame40 (1981) (to be published).
  5. A. Flusberg, R. A. Weingarten, S. R. Hartmann, “Spontaneous Raman scattering in atomic thallium vapor,” Phys. Lett. 43A, 433 (1973).
  6. L. Vriens, M. Adriaansz, “Electronic Raman scattering from Al, Ga, In, and Tl atoms,” J. Appl. Phys. 46, 3146 (1975). [CrossRef]
  7. J. C. Cummings, D. P. Aeschliman, “Raman spectroscopy of atomic fluorine,” Opt. Commun. 31, 165 (1979). [CrossRef]
  8. H. Schlossberg, “Fluorine-atom probe techniques for chemical lasers,” J. Appl. Phys. 47, 2044 (1976). [CrossRef]
  9. A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978). [CrossRef]
  10. D. L. Renschler et al., “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173 (1969). [CrossRef]
  11. D. W. Lepard, “Theoretical calculations of electronic Raman effects of the NO and O2 molecules,” Can. J. Phys. 48, 1664 (1970). [CrossRef]
  12. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).
  13. C. E. Moore, Selected Tables of Atomic Spectra: Atomic Energy Levels and Multiplet Tables: OI (Nat. Stand. Ref. Data Ser. 3, Nat. Bur. Stand., Washington, D.C., 1976), Sec. 7, p. A8 I-2.
  14. S. Gordon, B. J. McBride, “Computer program for calculation of complex equilibrium compositions,” NASA Lewis Research Center, Doc. No. N71-3775 (National Technical Information Service, Springfield, Va., 1971).
  15. L. D. Smoot, W. C. Hecker, G. A. Williams, “Prediction of propagating methane–air flames,” Combust. Flame 26, 323 (1976). [CrossRef]
  16. N. J. Brown et al., “Low pressure hydrogen/oxygen flame studies,” Combust. Flame 33, 151 (1978). [CrossRef]
  17. L. D. Smoot, “The structure of nonadiabatic, low pressure methane–oxygen flames,” Combust. Flame 31, 325 (1978). [CrossRef]
  18. C. J. Dasch, unpublished results.
  19. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712 (1974). [CrossRef]
  20. L. Vriens, “Raman scattering cross sections of In and Tl atoms and multiphoton processes in Sr,” Opt. Commun. 11, 396(1974). [CrossRef]
  21. W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1: Hydrogen through Neon (Nat. Stand. Ref. Data Ser. 4, Nat. Bur. Stand., Washington, D.C., 1966), p. 78.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited