OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 6, Iss. 1 — Jan. 1, 1981
  • pp: 7–9

Sampling theory for linear integral transforms

Robert J. Marks, II  »View Author Affiliations

Optics Letters, Vol. 6, Issue 1, pp. 7-9 (1981)

View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A sampling theorem is developed to reduce integration error in matrix–vector and linear multiplexing processors that perform discrete versions of continuous linear operations. By simply filtering the operation kernel before sampling, one can perform integration-error-free processing on inputs sampled at their Nyquist rate. Example applications to Laplace and Hilbert transformation are presented.

© 1981 Optical Society of America

Original Manuscript: July 28, 1980
Revised Manuscript: October 17, 1980
Published: January 1, 1981

Robert J. Marks, "Sampling theory for linear integral transforms," Opt. Lett. 6, 7-9 (1981)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Monahan, K. Bromley, R. P. Bocker, “Incoherent optical correlators,” Proc. IEEE 65, 121 (1977). [CrossRef]
  2. J. F. Walkup, “Space-variant coherent optical processing,” Opt. Eng. 19, 339 (1980).
  3. R. P. Bocker, “Matrix multipication using incoherent optical techniques,” Appl. Opt. 13, 1670 (1974). [CrossRef] [PubMed]
  4. W. Schneider, W. Fink, “Incoherent optical matrix multiplication,” Opt. Acta 22, 879 (1975). [CrossRef]
  5. P. N. Tamura, J. C. Wyant, “Two-dimensional matrix multiplication using coherent optical techniques,” Opt. Eng. 18, 198 (1979).
  6. M. A. Monahan et al., “Incoherent electro-optical processing with CCD’s,” in Proceedings of Digital International Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1975).
  7. A. R. Dias, “Incoherent matrix-vector multiplication for high-speed data processing,” Ph.D. thesis (Stanford U. Press, Stanford, Calif., 1980).
  8. J. W. Goodman, “The matrix-vector multiplication incoherent processor,” presented at Workshop on Future Directions for Optical Information Processing, May 20–22, 1980, Lubbock, Texas.
  9. T. F. Krile et al., “Holographic representation of space-variant systems using phase-coded reference beams,” Appl. Opt. 16, 3131 (1977). [CrossRef] [PubMed]
  10. T. F. Krile et al., “Multiplex holography with chirp-modulated binary phase-coded reference-beam masks,” Appl. Opt. 18, 52 (1979). [CrossRef] [PubMed]
  11. M. I. Jones, J. F. Walkup, M. O. Hagler, “Multiplex holography for space-variant optical computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 177, 16 (1979).
  12. R. J. Marks, “Two-dimensional space-variant processing using temporal holography: processor theory,” Appl. Opt. 18, 3670 (1979). [CrossRef]
  13. R. Kasturi, T. F. Krile, J. F. Walkup, “Space-variant 2-D processing using a sampled input/sampled transfer function approach,” presented at 1980 International Optical Computing Conference, April 7–11, 1980, Washington, D.C.
  14. R. J. Marks, J. F. Walkup, M. O. Hagler, “A sampling theorem for space-variant systems,” J. Opt. Soc. Am. 66, 918 (1976). [CrossRef]
  15. R. J. Marks, J. F. Walkup, M. O. Hagler, “Sampling theorems for linear shift-variant systems,” IEEE Trans. Circuits Syst. CAS-25, 228 (1978). [CrossRef]
  16. R. J. Marks, J. F. Walkup, M. O. Hagler, “Methods of linear system characterization through response cataloging,” Appl. Opt. 18, 655 (1979). [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited