OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 6, Iss. 12 — Dec. 1, 1981
  • pp: 607–609

Characterization and reconstruction of planar sources that generate identical intensity distributions in the Fraunhofer zone

R. Martínez-Herrero and P. M. Mejías  »View Author Affiliations


Optics Letters, Vol. 6, Issue 12, pp. 607-609 (1981)
http://dx.doi.org/10.1364/OL.6.000607


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general explicit form of the correlation functions of all the partially coherent quasi-monochromatic sources that generate identical intensity distributions at the far (Fraunhofer) zone is given. The common characteristic part of all of these correlation functions is pointed out. Also, the possibility is shown for reconstructing (in unique way), from intensity data at the far zone, any source whose correlation function at some region Ω depends on the coordinate difference only.

© 1981 Optical Society of America

History
Original Manuscript: August 3, 1981
Published: December 1, 1981

Citation
R. Martínez-Herrero and P. M. Mejías, "Characterization and reconstruction of planar sources that generate identical intensity distributions in the Fraunhofer zone," Opt. Lett. 6, 607-609 (1981)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-6-12-607


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Wolf, J. Opt. Soc. Am. 68, 1597–1605 (1978). [CrossRef]
  2. E. Collet, E. Wolf, Opt. Lett. 2, 27–29 (1978). [CrossRef]
  3. E. Collet, E. Wolf, J. Opt. Soc. Am. 69, 943–950 (1979). [CrossRef]
  4. sΓi (r1, r2) denotes the mutual coherence function at τ = 0.
  5. J. Perina, V. Perinova, Opt. Acta 16, 309–320 (1969). [CrossRef]
  6. B. J. Thompson, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1969), Vol. VII, p. 171.
  7. A. C. Zaanen, Linear Analysis (North-Holland, Amsterdam, 1960).
  8. Since the eigenfunctions of Ĥ′Ĥ generate the subspace orthogonal to the kernel of Ĥ′Ĥ, any function Pi(r1, r2) may be written as sum (finite or infinite) of functions orthogonal to all such eigenfunctions.
  9. R. P. Kanwal, Linear Integral Equations (Academic, New York, 1971).
  10. J. Perina, Coherence of Light (Van Nostrand, London, 1971).
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  12. H. Gamo, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1964), Vol. III, p. 189.
  13. B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).
  14. R. Marímez-Herrero, Nuovo Cimento 54, 205–210 (1979).
  15. M. J. Beran, G. B. Parrent, Theory of Partial Coherence (Prentice-Hall, Englewood Cliffs, N.J., 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited