OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 9, Iss. 4 — Apr. 1, 1984
  • pp: 128–130

Generation of microwaves by mixing two optical frequencies in a nonlinear crystal: a novel approach to high-bandwidth optical mixers

N. H. Tran, R. Kachru, T. F. Gallagher, J. P. Watjen, and G. C. Bjorklund  »View Author Affiliations


Optics Letters, Vol. 9, Issue 4, pp. 128-130 (1984)
http://dx.doi.org/10.1364/OL.9.000128


View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical mixing of waves separated in frequency by many gigahertz can be accomplished by allowing the waves to mix in a nonlinear medium to generate microwave difference frequencies. This basis for high-bandwidth optical mixers is demonstrated by mixing optical frequencies ~4 GHz apart of a pulsed dye-laser beam at ~660 nm in a LiTaO3 crystal to produce readily detectable microwave power at ~4 GHz.

© 1984 Optical Society of America

History
Original Manuscript: November 23, 1983
Manuscript Accepted: January 13, 1984
Published: April 1, 1984

Citation
N. H. Tran, J. P. Watjen, G. C. Bjorklund, R. Kachru, and T. F. Gallagher, "Generation of microwaves by mixing two optical frequencies in a nonlinear crystal: a novel approach to high-bandwidth optical mixers," Opt. Lett. 9, 128-130 (1984)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-9-4-128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Advanced Devices Inc., Los Alamos, New Mexico 87544, specifies response bandwidths from 7 to 10 GHz on its S-100-series pyroelectric detectors. The voltage responsivity, ≳5 μV/W, is flat above 10 μm and below 0.35 μm but unfortunately drops by some 2 orders of magnitude in the visible.
  2. G. Lucovsky, R. B. Emmons, Appl. Opt. 4, 697 (1965). [CrossRef]
  3. D. P. Schinke, R. G. Smith, A. R. Hartman, in Semiconductor Devices for Optical Communication, Vol. 39, H. Kressel, ed. (Springer-Verlag, New York, 1980), p. 63. [CrossRef]
  4. S. Y. Wang, D. M. Bloom, D. M. Collins, Appl. Phys. Lett. 42, 190 (1983). [CrossRef]
  5. S. Y. Wang, D. M. Bloom, Electron. Lett. 19, 554 (1983). [CrossRef]
  6. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  7. M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962). [CrossRef]
  8. K. E. Niebuhr, Appl. Phys. Lett. 2, 136 (1963). [CrossRef]
  9. F. Zernike, Phys. Rev. Lett. 22, 931 (1969). [CrossRef]
  10. N. Van Tran, C. K. N. Patel, Phys. Rev. Lett. 22, 463 (1969). [CrossRef]
  11. T. Y. Chang, N. Van Tran, C. K. N. Patel, Appl. Phys. Lett. 13, 357 (1968). [CrossRef]
  12. T. J. Bridges, A. R. Strnad, Appl. Phys. Lett. 20, 382 (1972). [CrossRef]
  13. L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968). [CrossRef]
  14. T. J. Bridges, T. Y. Chang, Phys. Rev. Lett. 22, 811 (1969). [CrossRef]
  15. N. H. Tran, R. Kachru, T. F. Gallagher, J. P. Watjen, G. C. Bjorklund, Opt. Lett. 8, 157 (1983). [CrossRef] [PubMed]
  16. P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, Appl. Phys. Lett. 8, 81 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited