OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 9, Iss. 4 — Apr. 1, 1984
  • pp: 143–145

Optical threshold logic elements for digital computation

R. Arrathoon and M. H. Hassoun  »View Author Affiliations

Optics Letters, Vol. 9, Issue 4, pp. 143-145 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid integrated optical threshold logic element is proposed for fast digital computation on a chip level. Each input and output optical beam occupies a separate channel and is coupled directly to the source. This suggests the possibility of achieving reliable optical digital operation in a complex network. Such a network is expected to be particularly compact because one or several threshold logic elements may replace many simple optical logic elements. The devices are also capable of high-speed programmability, so the same set of elements can serve different functions. Applications to conventional arithmetic computation and to high-speed residue arithmetic computation are presented.

© 1984 Optical Society of America

Original Manuscript: September 30, 1983
Manuscript Accepted: January 26, 1984
Published: April 1, 1984

R. Arrathoon and M. H. Hassoun, "Optical threshold logic elements for digital computation," Opt. Lett. 9, 143-145 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Verber, R. P. Kenan, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 57 (1983); 8 bits is normally taken as the limiting accuracy for analog calculations.
  2. W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).
  3. J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975). [CrossRef]
  4. W. E. Martin, Appl. Phys. Lett. 26, 562 (1975). [CrossRef]
  5. L. Goldberg, S. H. Lee, Appl. Opt. 18, 2045 (1979). [CrossRef] [PubMed]
  6. D. Hall, A. Yariv, E. Garmire, Appl. Phys. Lett. 17, 127 (1970). [CrossRef]
  7. P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18, 26 (1981).
  8. R. L. Holman, Electrooptic Waveguide Modulators: Fabrication and Performance (University of Rochester, Rochester, N. Y., 1983) pp. 43–54. A crude rule of thumb for damage thresholds at 632.8 nm in LiNbO3 is 100 W/cm2 [R. L. Holman, Battelle Columbus Laboratories, Columbus, Ohio 43201 (personal communication)].
  9. A. Neyer, Electron. Lett. 19, 553 (1983). [CrossRef]
  10. Z. Kohavi, Switching and Finite Automata Theory (McGraw-Hill, New York, 1978), pp. 189–213.
  11. S. Y. Huang, S. H. Lee, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 123 (1983).
  12. F. K. Reinhart, Appl. Phys. Lett. 22, 372 (1973). [CrossRef]
  13. M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975). [CrossRef]
  14. R. V. Schmidt, P. S. Cross, A. M. Glass, J. Appl. Phys. 51, 90 (1980). [CrossRef]
  15. D. H. Navon, Electronic Materials and Devices (Houghton Mifflin, Boston, Mass., 1975), p. 207.
  16. A. Huang, Y. Tsunoda, J. W. Goodman, S. Ishihara, Appl. Opt. 18, 149 (1979). [CrossRef] [PubMed]
  17. D. Psaltis, D. Casasent, Appl. Opt. 18, 163 (1979). [CrossRef] [PubMed]
  18. A. Tai, I. Cindrich, J. R. Fienup, C. C. Aleksoff, Appl. Opt. 18, 2812 (1979). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited