OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 1 — Jan. 1, 2013
  • pp: 25–27
« Show journal navigation

Dressed optical filaments

M. S. Mills, M. Kolesik, and D. N. Christodoulides  »View Author Affiliations


Optics Letters, Vol. 38, Issue 1, pp. 25-27 (2013)
http://dx.doi.org/10.1364/OL.38.000025


View Full Text Article

Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this Letter we show that by appropriately providing an auxiliary “dress” beam one can extend the longevity of an optical filament by almost one order of magnitude. These optical dressed filaments can propagate substantially further by judiciously harnessing energy from their secondary beam reservoir. This possibility is theoretically investigated in air when the filament is dressed with a conically convergent annular Gaussian beam.

© 2012 Optical Society of America

Since the first experimental observation by Braun et al., [1

1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20, 73 (1995). [CrossRef]

] optical filamentation in transparent media has been the focus of considerable attention. In general, an optical filament establishes itself through a dynamic balance of Kerr self-focusing effects and defocusing processes caused by multiphoton produced plasma [2

2. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007). [CrossRef]

]. To maintain this balance the filament must expend its own energy, and as expected once its power dips below a certain threshold, it eventually vanishes. Clearly, it will be important to devise schemes capable of extending the longevity of a filament. To this end, several methods have already been investigated [3

3. G. Mechain, A. Couairon, Y. B. Andre, C. DÁmico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, Appl. Phys. B 79, 379 (2004). [CrossRef]

12

12. P. Polynkin, M. Kolesik, and J. Moloney, Opt. Express 17, 575 (2009). [CrossRef]

]. For example, by introducing a negative temporal chirp, one can shift the position where a filament forms and possibly double its corresponding propagation length [3

3. G. Mechain, A. Couairon, Y. B. Andre, C. DÁmico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, Appl. Phys. B 79, 379 (2004). [CrossRef]

7

7. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Woste, Eur. Phys. J. 20, 183 (2002). [CrossRef]

]. This same principle when applied to Bessel–Gauss beams has been shown to extend a filament as much as two and a half times its normal distance [11

11. P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. D. Trapani, and J. Moloney, Opt. Express 16, 15733 (2008). [CrossRef]

,12

12. P. Polynkin, M. Kolesik, and J. Moloney, Opt. Express 17, 575 (2009). [CrossRef]

]. Yet, if one is to adopt such methods, then the success of filament prolongation is ultimately limited by the amount of power contained in the initial self-focusing wavefront. One avenue to overcome this limitation would be to somehow replenish the energy of the filament during propagation.

In this work, we explore a new approach by which the lifecycle of an optical filament in a transparent medium can be extended by almost an order of magnitude. Because a filament’s propagation distance crucially depends on its surrounding energy [13

13. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 83, 2938 (1999). [CrossRef]

15

15. W. Liu, J. F. Gravel, F. Theberge, A. Becker, and S. L. Chin, Appl. Phys. B 80, 857 (2005). [CrossRef]

], we propose to “dress” a filament with an encompassing low intensity auxiliary beam that will act as a secondary energy reservoir. This “dressing beam” is judiciously tailored so that it continuously resupplies power to the filament in a way that extends its longevity. Even more importantly, the dressing beam is prudently designed to maintain a low intensity profile throughout most of its propagation; this prevents the dress from inducing nonlinear effects by itself. The role of the dress reservoir is solely to support the filament during propagation.

To describe the evolution dynamics of a dressed filament we use the Unidirectional Pulse Propagation Equation (UPPE) solver [16

16. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004). [CrossRef]

]. The electric field is represented in terms of its temporal and spatial spectral amplitude, E⃗(k,ω,z), which satisfies the equation
zE⃗(k,ω,z)=+ikzE⃗(k,ω,z)+iω22ε0c2kzP⃗(k,ω,z)ω2ε0c2kzJ⃗(k,ω,z),
(1)
where kz(k,ω)ω2ε(ω)/c2k2 with ε(ω) standing for frequency dependent permittivity of air. The nonlinear light-medium interactions are included within the polarization and current terms and account for the standard components of femtosecond filaments [2

2. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007). [CrossRef]

]. We use n21×1023m2/W for the electronic Kerr effect [17

17. J. K. Wahlstrand, Y. H. Cheng, and H. M. Milchberg, Phys. Rev. A 85, 043820 (2012). [CrossRef]

] and neglect the delayed Raman response because of our short pulse durations. The strong-field ionization is parametrized as in [18

18. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000). [CrossRef]

] with effective power-law rates tρ=(ρatρ)σ|E(t)|2K with KN2=7.5, KO2=6.5, ρat,N2=2×1025m3, ρat,O2=5×1024m3, σN2=7.9×10124s1m15/W7.5, and σO2=8.85×10105s1m13/W6.5. We also include effective current and avalanche terms to model energy loss due to ionization; the defocusing effect of freed electrons is accounted for by a Drude model (τc=350fs) with the current density driven by the electric field and the total freed electron density (see [19

19. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. Ramrez-Góngora, J. de, and M. Kolesik, Eur. Phys. J. Special Topics 199, 5 (2011). [CrossRef]

] for details of implementation).

For comparative purposes, we first examine the evolution dynamics of an undressed optical pulse with λ=800nm and a Gaussian envelope ψF(r,t,z=0)=2η0I0exp[r2/wF2]exp[t2/τF2], where η0=377Ω. For this filamenting field, we choose a beamwidth of wF=2mm, a pulse duration of τF=30fs, and a peak intensity of I0=5×1015W/m2. This corresponds to a power of about 3.27Pcrit. Two cross-sections, IF(x,y=0,t=0,z) and IF(x=0,y=0,t=0,z), resulting from the UPPE simulation are displayed in Figs. 1(a) and 1(b), respectively.

Fig. 1. (a) Cross-section, IF(x,y=0,t=0,z), shows the formation of a filament which propagates for a distance, L12m and (b) inspection along the propagation axis, IF(x=0,y=0,t=0,z), reveals a self-focusing collapse around 7 meters followed by one intensity clamped refocusing cycle. Intensity values are scaled to I0 and the intensity limit in (a) is set to 40I0.

As indicated in Figs. 1(a) and 1(b), a filament forms around 6 or 7 m [20

20. J. Marburger, Prog. Quantum Electron. 4, 35 (1975). [CrossRef]

] and propagates for approximately L1=2m with a clamped intensity of a few 1017W/m2 [21

21. A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, Appl. Phys. B 73, 287 (2001). [CrossRef]

]. As seen, this particular filament only experiences one refocusing cycle.

Next, we introduce an annular Gaussian dressing beam with a negative phase tilt of the form, ψD(r,t,z=0)=2η0IDexp[(rr0)2/wD2]exp[iδr]exp[t2/τD2]. Note that unlike vortex beams this wavefront involves no phase singularity. The parameters for this optical dress are judiciously chosen to be ID=1.5×1014W/m2, wD=1.0cm, r0=1.8cm, δ=85cm1, and τD=30fs. This corresponds to a low intensity wavefront with a large power reservoir containing 22Pcrit. The term exp[iδr] causes the energy within this dressing beam to gently flow toward the propagation axis, and the parameter δ is tailored so that the dressing beam replenishes the filament (Fig. 2).

Fig. 2. (a) Cross-section, ID(x,y=0,t=0,z), shows the evolution dynamics of the dress beam; note that the maximum intensity of the initial wavefront is only 3% that of the filament and (b) profile ID(x=0,y=0,t=0,z) indicates that this particular Gaussian dress will supply additional power to the filament when it is necessary.

Figure 2(a) indicates that the initial maximum dressing beam intensity is quite low (3%I0) and retains a low intensity profile throughout most of its propagation. An area of concern, however, is along the propagation axis where the intensity can reach higher values. Nevertheless, while the term exp[iδr] is responsible for channeling the energy toward the center, it also results in rapid defocusing. Consequently, the dress beam itself does not induce lasting nonlinear effects and therefore does not develop a filament during propagation. This becomes evident by monitoring certain features. To begin with, the dress never undergoes self-focusing collapse; additionally, specific to these parameters, the maximum electron plasma densities generated by the dress beam are orders of magnitude less than those anticipated in a filament; lastly, a linear simulation with identical beam parameters produces virtually identical results.

We then synthesize the dressed filament by combining the phase tilted Gaussian dress and the filamenting beam, ψDF(r,t,z=0)=ψF+ψD (intensity cross-section shown in Fig. 3). The evolution dynamics resulting from this initial condition are displayed in Fig. 4. Note that in Fig. 4(a) the dress beam is hardly noticeable since its peak intensity always remains low throughout propagation and is only manifested when it joins the filament beam. We wish to stress that this feature is paramount to the dress beam’s efficacy, but also prohibits it from forming its own filament. Nevertheless, the results in Fig. 4(b) show a drastic extension of the filamentation process, which is further confirmed by the presence of plasma and a high intensity core with an average diameter of 100μm. Thus, we are lead to conclude that both the filament and the dress are intimately intertwined during this effect. By comparing Figs. 1 and 4, we clearly see that the auxiliary dress beam replenishes the filament’s power and results in many additional refocusing cycles. In this particular example, the filament’s length is extended from about 2 meters to 18 meters, a nine fold improvement over the unaided case.

Fig. 3. (a) Cross-section of the initial dressed filament, IDF(x,y=0,t=0,z=0); note that the initial maximum intensity of the dress is only 3% that of the filament beam and (b) because of the negative phase tilt, the dress energy flows inward.
Fig. 4. (a) Cross-section, IDF(x,y=0,t=0,z), shows the formation of a dressed filament which propagates for a distance, L218m after the initial focus and (b) inspection along the propagation axis, IDF(x=0,y=0,t=0,z), reveals a self-focusing collapse around 7 meters followed by multiple refocusing cycles. The intensity limit in (a) is set to 40I0.

In conclusion, we have shown that one can greatly extend the longevity of an optical filament by judiciously providing an auxiliary dress beam that acts as a secondary energy reservoir throughout propagation. Of interest will be to examine if the filamentation process can be further extended by optimizing the dress beam (e.g., adjusting the shape of the dress beam’s intensity). Our results may find application not only in long-range filamentation experiments, but also in settings where higher harmonic generation is possible via these same phenomena [22

22. T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Macke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, Science 336, 1287 (2012). [CrossRef]

].

This work was supported by the Air Force Office of Scientific Research (MURI Grant No. FA9550-10-1-0561).

References

1.

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20, 73 (1995). [CrossRef]

2.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007). [CrossRef]

3.

G. Mechain, A. Couairon, Y. B. Andre, C. DÁmico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, Appl. Phys. B 79, 379 (2004). [CrossRef]

4.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, Phys. Rev. E 69, 036607 (2004). [CrossRef]

5.

G. Mechain, C. D. Amico, Y. B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, Opt. Commun. 247, 171 (2005). [CrossRef]

6.

I. S. Golubtsov, V. P. Kandidov, and O. G. Kosareva, Quantum Electron. 33, 525 (2003). [CrossRef]

7.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Woste, Eur. Phys. J. 20, 183 (2002). [CrossRef]

8.

Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, W. Liu, and S. L. Chin, Opt. Lett. 34, 3752 (2009). [CrossRef]

9.

A. Couairon, G. Mechain, S. Tzortzakis, M. Franco, B. Lamouroux, B. Prade, and A. Mysyrowicz, Opt. Commun. 225, 177 (2003). [CrossRef]

10.

S. Tzortzakis, G. Mechain, G. Patalano, M. Franco, B. Prade, and A. Mysyrowicz, Appl. Phys. B 76, 609 (2003). [CrossRef]

11.

P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. D. Trapani, and J. Moloney, Opt. Express 16, 15733 (2008). [CrossRef]

12.

P. Polynkin, M. Kolesik, and J. Moloney, Opt. Express 17, 575 (2009). [CrossRef]

13.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 83, 2938 (1999). [CrossRef]

14.

W. Liu, F. Théberge, E. Arévalo, J. F. Gravel, A. Becker, and S. L. Chin, Opt. Lett. 30, 2602 (2005). [CrossRef]

15.

W. Liu, J. F. Gravel, F. Theberge, A. Becker, and S. L. Chin, Appl. Phys. B 80, 857 (2005). [CrossRef]

16.

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004). [CrossRef]

17.

J. K. Wahlstrand, Y. H. Cheng, and H. M. Milchberg, Phys. Rev. A 85, 043820 (2012). [CrossRef]

18.

J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000). [CrossRef]

19.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. Ramrez-Góngora, J. de, and M. Kolesik, Eur. Phys. J. Special Topics 199, 5 (2011). [CrossRef]

20.

J. Marburger, Prog. Quantum Electron. 4, 35 (1975). [CrossRef]

21.

A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, Appl. Phys. B 73, 287 (2001). [CrossRef]

22.

T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Macke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, Science 336, 1287 (2012). [CrossRef]

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 3, 2012
Revised Manuscript: November 27, 2012
Manuscript Accepted: November 29, 2012
Published: December 20, 2012

Citation
M. S. Mills, M. Kolesik, and D. N. Christodoulides, "Dressed optical filaments," Opt. Lett. 38, 25-27 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-1-25


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20, 73 (1995). [CrossRef]
  2. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007). [CrossRef]
  3. G. Mechain, A. Couairon, Y. B. Andre, C. DÁmico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, Appl. Phys. B 79, 379 (2004). [CrossRef]
  4. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, Phys. Rev. E 69, 036607 (2004). [CrossRef]
  5. G. Mechain, C. D. Amico, Y. B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, Opt. Commun. 247, 171 (2005). [CrossRef]
  6. I. S. Golubtsov, V. P. Kandidov, and O. G. Kosareva, Quantum Electron. 33, 525 (2003). [CrossRef]
  7. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Woste, Eur. Phys. J. 20, 183 (2002). [CrossRef]
  8. Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, W. Liu, and S. L. Chin, Opt. Lett. 34, 3752 (2009). [CrossRef]
  9. A. Couairon, G. Mechain, S. Tzortzakis, M. Franco, B. Lamouroux, B. Prade, and A. Mysyrowicz, Opt. Commun. 225, 177 (2003). [CrossRef]
  10. S. Tzortzakis, G. Mechain, G. Patalano, M. Franco, B. Prade, and A. Mysyrowicz, Appl. Phys. B 76, 609 (2003). [CrossRef]
  11. P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. D. Trapani, and J. Moloney, Opt. Express 16, 15733 (2008). [CrossRef]
  12. P. Polynkin, M. Kolesik, and J. Moloney, Opt. Express 17, 575 (2009). [CrossRef]
  13. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 83, 2938 (1999). [CrossRef]
  14. W. Liu, F. Théberge, E. Arévalo, J. F. Gravel, A. Becker, and S. L. Chin, Opt. Lett. 30, 2602 (2005). [CrossRef]
  15. W. Liu, J. F. Gravel, F. Theberge, A. Becker, and S. L. Chin, Appl. Phys. B 80, 857 (2005). [CrossRef]
  16. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004). [CrossRef]
  17. J. K. Wahlstrand, Y. H. Cheng, and H. M. Milchberg, Phys. Rev. A 85, 043820 (2012). [CrossRef]
  18. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000). [CrossRef]
  19. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. Ramrez-Góngora, J. de, and M. Kolesik, Eur. Phys. J. Special Topics 199, 5 (2011). [CrossRef]
  20. J. Marburger, Prog. Quantum Electron. 4, 35 (1975). [CrossRef]
  21. A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, Appl. Phys. B 73, 287 (2001). [CrossRef]
  22. T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Macke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, Science 336, 1287 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited