OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 1 — Jan. 1, 2014
  • pp: 9–12
« Show journal navigation

Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power

Clara J. Saraceno, Florian Emaury, Cinia Schriber, Martin Hoffmann, Matthias Golling, Thomas Südmeyer, and Ursula Keller  »View Author Affiliations


Optics Letters, Vol. 39, Issue 1, pp. 9-12 (2014)
http://dx.doi.org/10.1364/OL.39.000009


View Full Text Article

Acrobat PDF (524 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a semiconductor saturable absorber mirror (SESAM) mode-locked thin-disk laser generating 80 μJ of pulse energy without additional amplification. This laser oscillator operates at a repetition rate of 3.03 MHz and delivers up to 242 W of average output power with a pulse duration of 1.07 ps, resulting in an output peak power of 66 MW. In order to minimize the parasitic nonlinearity of the air inside the laser cavity, the oscillator was operated in a vacuum environment. To start and stabilize soliton mode locking, we used an optimized high-damage threshold, low-loss SESAM. With this new milestone result, we have successfully scaled the pulse energy of ultrafast laser oscillators to a new performance regime and can predict that pulse energies of several hundreds of microjoules will become possible in the near future. Such lasers are interesting for both industrial and scientific applications, for example for precise micromachining and attosecond science.

© 2013 Optical Society of America

Ultrafast laser sources have advanced tremendously during the past two decades and have enabled important industrial and scientific breakthroughs [1

1. U. Keller, Appl. Phys. B 100, 15 (2010). [CrossRef]

]. There is a strong interest for a wide range of industrial and scientific applications to continue to push the performance of ultrafast sources toward higher average output powers at >100kHz pulse repetition rates. Examples include laser precision micromachining and cutting [2

2. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, Opt. Express 14, 12546 (2006). [CrossRef]

,3

3. A. Ancona, S. Doring, C. Jauregui, F. Roser, J. Limpert, S. Nolte, and A. Tunnermann, Opt. Lett. 34, 3304 (2009). [CrossRef]

], frequency metrology from the infrared to the extreme ultraviolet [4

4. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012). [CrossRef]

,5

5. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Russbueldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, Nat. Photonics 7, 608 (2013). [CrossRef]

], and strong laser field physics in attosecond science [6

6. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, Nat. Photonics 2, 599 (2008). [CrossRef]

,7

7. M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tunnermann, Nat. Photonics 7, 555 (2013). [CrossRef]

].

Several laser technologies have, in the past years, successfully scaled the available average power of ultrafast systems. The most prominent examples are Innsolab amplifiers [8

8. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, Opt. Lett. 35, 4169 (2010). [CrossRef]

], chirped-pulse fiber amplifiers [9

9. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett. 35, 94 (2010). [CrossRef]

], and thin-disk laser (TDL) oscillators [10

10. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]

] and regenerative amplifiers [11

11. R. Fleischhaker, R. Gebs, A. Budnicki, M. Wolf, J. Kleinbauer, and D. Sutter, in European Conference on Lasers and Electro-Optics, Munich, Germany (2013).

]. Among these approaches, mode-locked TDLs can reach the targeted performance directly from a table-top oscillator without additional amplifiers. Since their first demonstration in the year 2000 [12

12. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, Opt. Lett. 25, 859 (2000). [CrossRef]

], semiconductor saturable absorber mirror (SESAM)-mode-locked [13

13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996). [CrossRef]

] TDLs [14

14. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994). [CrossRef]

] have set the frontiers in terms of average power and pulse energy available from ultrafast laser oscillators, reaching comparable levels to that of high repetition rate amplifier systems. In terms of average power, we have achieved up to 275 W from an Yb:YAG mode-locked oscillator, with 583-fs pulses at a repetition rate of 16.9 MHz, corresponding to 17 μJ of pulse energy [10

10. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]

]. This record-high average power was obtained by operating the oscillator in a vacuum environment, thus minimizing the parasitic nonlinearity of the atmosphere by several orders of magnitude. This was crucial to avoid an excessive nonlinear phase shift by self-phase modulation caused by the air inside the oscillator, which can destabilize mode-locked operation [15

15. F. X. Kärtner and U. Keller, Opt. Lett. 20, 16 (1995). [CrossRef]

,16

16. R. Paschotta and U. Keller, Appl. Phys. B 73, 653 (2001). [CrossRef]

]. In terms of pulse energy, 41 μJ (Fig. 1, blue) have been previously demonstrated with a multipass Yb:YAG TDL. The parasitic nonlinearities were in this case reduced by using 11 double-passes through the Yb:YAG gain disk. This increased the overall gain per round trip, allowing to operate the oscillator at large output coupling rates and effectively reducing the intracavity peak power for a given output peak power. The average power obtained in this result was 145 W in 1.12-ps pulses [17

17. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, Opt. Express 20, 9698 (2012). [CrossRef]

].

Fig. 1. Evolution of the maximum pulse energy available from mode-locked thin-disk oscillators since their first demonstration in the year 2000. The result presented in this Letter is highlighted with a red star symbol.

Here, we present our latest milestone result (Fig. 1, red), where we successfully scaled the pulse energy of an Yb:YAG TDL to 80 μJ, which is the highest energy achieved directly from an ultrafast oscillator so far. Our laser operates at a repetition rate of 3.03 MHz and generates up to 242 W of average power. The pulses have a duration of 1.07 ps, resulting in an output peak power of 66 MW. The oscillator was operated in vacuum (1mbar, limited by the vacuum pump) in order to reduce the nonlinear phase shift undergone by the pulses within one round trip in the laser oscillator, confirming the suitability of this approach [10

10. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]

] for pulse energy scaling of mode-locked oscillators.

The Yb:YAG thin disk (TRUMPF GmbH) had a thickness of <100μm, a doping concentration of 10at.%, was glued on a water-cooled diamond, and showed no significant thermal lensing throughout the pumping operation range of the laser (up to a pump power of 800 W). Without taking into account the extracted laser power, this corresponds to an intensity of 4.6kW/cm2. This enabled us to obtain robust fundamental mode operation throughout the entire pumping range, without the need to adapt any resonator length [18

18. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, Opt. Lett. 35, 2302 (2010). [CrossRef]

,19

19. C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, Opt. Express 20, 7054 (2012). [CrossRef]

]. The pump spot on the disk had a diameter of 4.7 mm. The pump used was a commercially available fiber-coupled laser diode that can emit up to 1.2 kW of power at a wavelength of 940 nm. With 24 pump passes through the disk, we estimate a pump absorption of 90% at the inversion level used in this experiment.

Fig. 2. Schematic of the 3.03 MHz mode-locked oscillator that delivers a pulse energy of 80 μJ. SESAM, semiconductor saturable absorber mirror; OC, output coupler; DM, dispersive mirror; TFP, thin-film polarizer; MPC, multipass cell; GTI, Gires–Tournois interferometer type dispersive mirror.

The vacuum chamber was operated at 1 mbar of air pressure. The remaining air in the oscillator was the main contribution to the phase shift due to self-phase modulation of the pulses over one round trip in the laser cavity. For soliton mode locking [15

15. F. X. Kärtner and U. Keller, Opt. Lett. 20, 16 (1995). [CrossRef]

,16

16. R. Paschotta and U. Keller, Appl. Phys. B 73, 653 (2001). [CrossRef]

] we introduced a total amount of dispersion per round trip of 28,000fs2. This amount of negative dispersion was conveniently introduced by using a flat Gires–Tournois interferometer (GTI)-type dispersive mirror in the MPC (Fig. 2). For starting and stabilizing the soliton mode-locking mechanism, we used a SESAM especially designed for high damage threshold and high-power operation following our guidelines [23

23. C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 18, 29 (2012). [CrossRef]

]. The spot radius on the SESAM in our laser cavity was 1mm. Its design and growth temperature is the same as the one used in [10

10. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]

]. It consists of a 30-pair AlAs/GaAs distributed Bragg reflector, an antiresonant absorber section (three InGaAs quantum well absorbers grown at 300°C), and a three-pair dielectric top-coating (SiO2/Si3N4). As discussed in [23

23. C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 18, 29 (2012). [CrossRef]

], this results in samples with low losses, a reflectivity rollover shifted to high fluences and high damage thresholds, all crucial aspects for average power and pulse energy scaling. We measured the nonlinear reflectivity and extracted the relevant parameters of this SESAM using a high-precision nonlinear reflectivity setup [24

24. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, Opt. Express 16, 7571 (2008). [CrossRef]

] seeded by an Yb:YAG TDL that delivers up to 2 μJ of pulse energy in 1-ps pulses at a repetition rate of 3.9 MHz. This allowed us to characterize our sample at parameters that are very close to the operation parameters of our TDL (pulse duration, repetition rate, and center wavelength). The measurement and corresponding least-squares fit >are presented in Fig. 3. The extracted parameters are a saturation fluence Fsat=120μJ/cm2, a modulation depth ΔR=1.1%, negligible nonsaturable losses ΔRns<0.1%, and an induced absorption coefficient F27500mJ/cm2.

Fig. 3. Nonlinear reflectivity of the SESAM used for the high-energy TDL and corresponding least-squares fit. The operation fluence of this SESAM at the maximum output pulse energy of our high-energy TDL is marked in red.

Mode-locked operation was obtained starting with 66 W of average output power (corresponding to a pulse energy of 22 μJ) and continued up to 242 W (corresponding to 80 μJ of pulse energy). As expected for soliton mode locking, the pulse duration decreased following a 1/Ep law from 2.80 to 1.07 ps (Fig. 4, left). At the maximum output power, the pump power was 790 W, resulting in an optical-to-optical efficiency (Pout/Ppump) of 30% (Fig. 4, right). At the maximum output power, the pulse energy reaches 80 μJ, a new breakthrough for ultrafast oscillators. At this maximum pulse energy the pulses have a full width half-maximum duration of 1.07 ps and a spectral width of 1.4 nm (Fig. 5, top), resulting in a peak power of 66 MW. The resulting time bandwidth product of 0.39 (an ideal transform-limited sech2 pulse has 0.315) indicates slightly chirped pulses, which was most likely induced by the strong saturation of the SESAM (90 times above the saturation fluence).

Fig. 4. Left: Duration of mode-locked pulses as a function of their output pulse energy. Right: Output power slope and optical-to-optical efficiency of the mode-locked oscillator.
Fig. 5. Top: Autocorrelation (left) and optical spectrum (right) of the pulses and corresponding sech2 fits. Middle: RF spectrum with a 16 MHz span and a RBW of 30 kHz (left) and with a 60 kHz span with a RBW of 1 kHz (right). Bottom: Sampling oscilloscope trace (left) and M2 measurement performed using a commercially available scanning-slit automatized beam profiler and a focal length of f=100mm (right). All data was taken at the maximum pulse energy of 80 μJ.

In summary, we presented a SESAM-mode-locked Yb:YAG TDL delivering pulses with 80 μJ pulse energy and an average power of 242 W. The pulses had a duration of 1.07 ps and the oscillator operated at a repetition rate of 3.03 MHz. To our knowledge, this represents the highest pulse energy ever obtained from a mode-locked laser oscillator to date. This result paves the way to ultrafast oscillators with hundreds of microjoules of pulse energy and hundreds of megawatts of peak power. In addition, pulse compression of this source will enable us to drive strong-field laser physics experiments at high-repetition rate directly from a table-top source.

This work was supported by the Swiss National Science Foundation (SNSF). Thomas Südmeyer acknowledges support from the ERC (Starting Grant 2011 #279545).

References

1.

U. Keller, Appl. Phys. B 100, 15 (2010). [CrossRef]

2.

L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, Opt. Express 14, 12546 (2006). [CrossRef]

3.

A. Ancona, S. Doring, C. Jauregui, F. Roser, J. Limpert, S. Nolte, and A. Tunnermann, Opt. Lett. 34, 3304 (2009). [CrossRef]

4.

A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012). [CrossRef]

5.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Russbueldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, Nat. Photonics 7, 608 (2013). [CrossRef]

6.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, Nat. Photonics 2, 599 (2008). [CrossRef]

7.

M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tunnermann, Nat. Photonics 7, 555 (2013). [CrossRef]

8.

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, Opt. Lett. 35, 4169 (2010). [CrossRef]

9.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett. 35, 94 (2010). [CrossRef]

10.

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]

11.

R. Fleischhaker, R. Gebs, A. Budnicki, M. Wolf, J. Kleinbauer, and D. Sutter, in European Conference on Lasers and Electro-Optics, Munich, Germany (2013).

12.

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, Opt. Lett. 25, 859 (2000). [CrossRef]

13.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996). [CrossRef]

14.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994). [CrossRef]

15.

F. X. Kärtner and U. Keller, Opt. Lett. 20, 16 (1995). [CrossRef]

16.

R. Paschotta and U. Keller, Appl. Phys. B 73, 653 (2001). [CrossRef]

17.

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, Opt. Express 20, 9698 (2012). [CrossRef]

18.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, Opt. Lett. 35, 2302 (2010). [CrossRef]

19.

C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, Opt. Express 20, 7054 (2012). [CrossRef]

20.

D. Herriott, H. Kogelnik, and R. Kompfner, Appl. Opt. 3, 523 (1964). [CrossRef]

21.

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 16, 6397 (2008). [CrossRef]

22.

V. Magni, J. Opt. Soc. Am. A 4, 1962 (1987). [CrossRef]

23.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 18, 29 (2012). [CrossRef]

24.

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, Opt. Express 16, 7571 (2008). [CrossRef]

25.

C. J. Saraceno, F. Emaury, C. Schriber, O. H. Heckl, C. R. E. Baer, M. Hoffmann, K. Beil, C. Kränkel, M. Golling, T. Südmeyer, and U. Keller, Appl. Sci. 3, 355 (2013). [CrossRef]

26.

J. Aus der Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, Opt. Lett. 22, 307 (1997). [CrossRef]

27.

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, Opt. Lett. 38, 3842 (2013). [CrossRef]

28.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, Appl. Phys. B 97, 281 (2009). [CrossRef]

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 11, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 15, 2013
Published: December 16, 2013

Citation
Clara J. Saraceno, Florian Emaury, Cinia Schriber, Martin Hoffmann, Matthias Golling, Thomas Südmeyer, and Ursula Keller, "Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power," Opt. Lett. 39, 9-12 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-1-9


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Keller, Appl. Phys. B 100, 15 (2010). [CrossRef]
  2. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, Opt. Express 14, 12546 (2006). [CrossRef]
  3. A. Ancona, S. Doring, C. Jauregui, F. Roser, J. Limpert, S. Nolte, and A. Tunnermann, Opt. Lett. 34, 3304 (2009). [CrossRef]
  4. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Nature 482, 68 (2012). [CrossRef]
  5. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Russbueldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, Nat. Photonics 7, 608 (2013). [CrossRef]
  6. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, Nat. Photonics 2, 599 (2008). [CrossRef]
  7. M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zair, L. Chipperfield, J. Limpert, and A. Tunnermann, Nat. Photonics 7, 555 (2013). [CrossRef]
  8. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, Opt. Lett. 35, 4169 (2010). [CrossRef]
  9. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett. 35, 94 (2010). [CrossRef]
  10. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]
  11. R. Fleischhaker, R. Gebs, A. Budnicki, M. Wolf, J. Kleinbauer, and D. Sutter, in European Conference on Lasers and Electro-Optics, Munich, Germany (2013).
  12. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, Opt. Lett. 25, 859 (2000). [CrossRef]
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996). [CrossRef]
  14. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994). [CrossRef]
  15. F. X. Kärtner and U. Keller, Opt. Lett. 20, 16 (1995). [CrossRef]
  16. R. Paschotta and U. Keller, Appl. Phys. B 73, 653 (2001). [CrossRef]
  17. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, Opt. Express 20, 9698 (2012). [CrossRef]
  18. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, Opt. Lett. 35, 2302 (2010). [CrossRef]
  19. C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, Opt. Express 20, 7054 (2012). [CrossRef]
  20. D. Herriott, H. Kogelnik, and R. Kompfner, Appl. Opt. 3, 523 (1964). [CrossRef]
  21. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 16, 6397 (2008). [CrossRef]
  22. V. Magni, J. Opt. Soc. Am. A 4, 1962 (1987). [CrossRef]
  23. C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 18, 29 (2012). [CrossRef]
  24. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, Opt. Express 16, 7571 (2008). [CrossRef]
  25. C. J. Saraceno, F. Emaury, C. Schriber, O. H. Heckl, C. R. E. Baer, M. Hoffmann, K. Beil, C. Kränkel, M. Golling, T. Südmeyer, and U. Keller, Appl. Sci. 3, 355 (2013). [CrossRef]
  26. J. Aus der Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, Opt. Lett. 22, 307 (1997). [CrossRef]
  27. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, Opt. Lett. 38, 3842 (2013). [CrossRef]
  28. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, Appl. Phys. B 97, 281 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited