OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 3 — Feb. 1, 2014
  • pp: 513–516
« Show journal navigation

Enhanced interferometric detection in two-dimensional spectroscopy with a Sagnac interferometer

Trevor L. Courtney, Samuel D. Park, Robert J. Hill, Byungmoon Cho, and David M. Jonas  »View Author Affiliations


Optics Letters, Vol. 39, Issue 3, pp. 513-516 (2014)
http://dx.doi.org/10.1364/OL.39.000513


View Full Text Article

Acrobat PDF (245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An intrinsically phase-stable Sagnac interferometer is introduced for optimized interferometric detection in partially collinear two-dimensional (2D) spectroscopy. With a pump–pulse pair from an actively stabilized Mach–Zehnder interferometer, the Sagnac scheme is demonstrated in broadband, short-wave IR (1–2 μm), 2D electronic spectroscopy of IR-26 dye.

© 2014 Optical Society of America

Two-dimensional (2D) Fourier transform (FT) spectra show how a nonlinear signal field, as a function of radiated frequency, depends on an excitation frequency, revealing coupling between excitations [1

1. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003). [CrossRef]

]. Except for a gap in the 1–2 μm short-wave IR region, 2D FT spectra are used from the terahertz [2

2. W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, J. Chem. Phys. 130, 164503 (2009). [CrossRef]

] to the deep UV [3

3. C. H. Tseng, S. Matsika, and T. C. Weinacht, Opt. Express 17, 18788 (2009). [CrossRef]

]. Pulses in the short-wave IR [4

4. D. Brida, S. Bonora, C. Manzoni, M. Marangoni, P. Villoresi, S. De Silvestri, and G. Cerullo, Opt. Express 17, 12510 (2009). [CrossRef]

] access low-energy electronic processes and next-generation photovoltaics, motivating extension to this region, where sensitivity is at a premium. 2D FT beam geometries range from fully noncollinear to fully collinear, with advantages and disadvantages for each. In all, three short pulses excite a sample, generating a nonlinear signal field that decays after the last pulse. The fully noncollinear 2D geometry produces a background-free signal field that is measured through optimized interference with a delayed local oscillator (LO) to sensitively detect both real absorptive and imaginary refractive parts of the 2D spectrum [1

1. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003). [CrossRef]

]. The LO must be strong enough to raise interference with the signal above detector noise but not so strong that it swamps the signal with LO shot noise [5

5. M. Levenson and G. Eesley, Appl. Phys. A 19, 1 (1979).

]. In contrast, a limitation of partially collinear 2D spectroscopy is that the last pulse and nonlinear signal copropagate [6

6. S. M. Gallagher Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489 (1999). [CrossRef]

], which can make their interference more difficult to detect. Several groups have demonstrated the partially collinear pump–probe geometry [7

7. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, Opt. Express 15, 16681 (2007). [CrossRef]

10

10. J. Helbing and P. Hamm, J. Opt. Soc. Am. B 28, 171 (2011). [CrossRef]

], which selectively detects the real part of the 2D spectrum [6

6. S. M. Gallagher Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489 (1999). [CrossRef]

]. The new method presented here combines the advantages of both geometries in a relatively compact and simple design: a partially collinear 2D spectrometer with a Sagnac interferometer creates a nearly background-free signal and selectively detects the absorptive 2D spectrum.

In a Sagnac interferometer, the output that returns light to the source has a symmetrical path (one beam splitter reflection with Fresnel coefficient r^ and one transmission with Fresnel coefficient t^ for each beam), which makes it the bright output [11

11. W. H. Steel, Interferometry (Cambridge University, 1967).

]. The more accessible, dark output of a lossless Sagnac has a π phase shift [Δϕ(ω)=π] between a beam with two reflections (first- and second-surface, or r^ and r^) and one with two transmissions. The intrinsic stability and ease of alignment of a Sagnac interferometer are appealing for ultrafast phase spectroscopy and optical background suppression in pump–probe spectroscopies [12

12. R. Trebino and C. C. Hayden, Opt. Lett. 16, 493 (1991). [CrossRef]

,13

13. S. Dobner, C. Cleff, C. Fallnich, and P. Gross, J. Chem. Phys. 137, 174201 (2012). [CrossRef]

]. In such experiments, an external pump pulse crosses a sample inserted in the interferometer; the signal is detected via perturbation of the dark output [14

14. K. Misawa and T. Kobayashi, Opt. Lett. 20, 1550 (1995). [CrossRef]

]. This Letter outlines the adaptation of such a Sagnac interferometer to a Brewster’s angle design [15

15. T. L. Courtney, S. D. Park, R. J. Hill, and D. M. Jonas are preparing a manuscript to be called “Broadband, low-dispersion, Brewster’s angle interferometers.”

] and its introduction for 2D spectroscopy. With a slight r^/t^ amplitude imbalance of the Sagnac beam splitter, destructive interference between probe and reference pulses forms an attenuated LO, which copropagates with the 2D signal field (Fig. 1).

Fig. 1. Partially collinear 2D spectrometer with Brewster’s angle interferometer. Pulses a and b, separated by delay τ, from the Mach–Zehnder impinge on the sample, followed by pulse c at delay T. The signal copropagates with pulse c in the Sagnac; pulses c and reference destructively interfere to become the attenuated LO in the Sagnac dark output. BS, gold-coated beam splitter; BB, beam block; L, plano–convex lens; f=7.5cm. Protected silver mirrors are unlabeled.

In this experiment, pulses from a 1 kHz Ti:sapphire regenerative amplifier pump a single-pass, short-wave IR noncollinear optical parametric amplifier (NOPA) with a periodically poled stoichiometric lithium tantalate (PPSLT) crystal [4

4. D. Brida, S. Bonora, C. Manzoni, M. Marangoni, P. Villoresi, S. De Silvestri, and G. Cerullo, Opt. Express 17, 12510 (2009). [CrossRef]

]. The wavelength-tunable NOPA generates 1–2.5 μJ pulses that enter a grating compressor; compression with a deformable mirror uses second-harmonic generation (SHG) feedback in a genetic algorithm [16

16. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999). [CrossRef]

]. After the compressor, the beam is spatially filtered with a 150 μm pinhole to remove any frequency-dependent angular deviations from the deformable mirror. Pulse durations of 30 fs are determined by zero-additional-phase spectral phase interferometry for direct electric-field reconstruction (ZAP-SPIDER) [17

17. P. Baum and E. Riedle, J. Opt. Soc. Am. B 22, 1875 (2005). [CrossRef]

] and SHG frequency-resolved optical gating (SHG-FROG) [18

18. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993). [CrossRef]

]. All spectral IR detection uses single-mode fiber coupling (ThorLabs 1060XP, NA=0.14) to a 0.15 m Czerny–Turner spectrograph (Princeton Instruments SP-2150i) with a liquid nitrogen cooled 1024×1 pixel InGaAs array (Princeton Instruments OMAV:1024-2.2).

The 2D spectrometer consists of an actively stabilized Mach–Zehnder interferometer and a Sagnac interferometer. A broadband, inconel-coated glass window [15

15. T. L. Courtney, S. D. Park, R. J. Hill, and D. M. Jonas are preparing a manuscript to be called “Broadband, low-dispersion, Brewster’s angle interferometers.”

,19

19. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, Opt. Lett. 26, 1155 (2001). [CrossRef]

] splits the spectrometer input beam into pump and Sagnac-incident beams. All beam splitters in this apparatus exploit the air–glass interface Brewster’s angle to prevent additional surface reflections and their interference. The Brewster’s angle Mach–Zehnder interferometer with inconel beam splitters creates a pump–pulse pair (pulses a and b) from the bright output with a delay, τ, roughly controlled by computerized translation stages. Interferometric feedback from a red He–Ne laser is used to drive a piezoelectric transducer (PZT) in one arm to lock τ with 0.6 nm rms stability during the 1 s collection of one interferogram. Actively stabilized steps in τ are taken at an integer plus a quarter cycle of the red He–Ne wavelength [20

20. M. K. Yetzbacher, T. L. Courtney, W. K. Peters, K. A. Kitney, E. R. Smith, and D. M. Jonas, J. Opt. Soc. Am. B 27, 1104 (2010). [CrossRef]

]; a yellow He–Ne laser is used to measure lock stability and track τ during a 2D scan.

The beam path entering the Sagnac interferometer is split into counterpropagating probe (c, transmitted) and reference (ref., reflected) pulses in a Brewster’s angle Sagnac interferometer with a gold-coated beam splitter (Fig. 1). Thus, three pulses (a, b, and c) pass through two metallic beam splitters (inconel- or gold-coated, 1 mm thick glass) at oppositely signed Brewster’s angles for matched dispersion and spatial compensation before the sample. The counterpropagating reference pulse passes through the sample tr1.5ns before the other three pulses. The off-axis collinear pump–pulse pair with delay τ=tbta impinges on the sample, followed by pulse c at the computer-controlled delay T, thus generating various nonlinear signals.

For Sagnac interferometers with planar beam paths and an even number of flat mirrors, clockwise and counterclockwise rays retrace each other exactly for all rays parallel to the central ray (common path), eliminating phase distortions [11

11. W. H. Steel, Interferometry (Cambridge University, 1967).

]. Femtosecond Sagnac interferometers have employed two flat mirrors [12

12. R. Trebino and C. C. Hayden, Opt. Lett. 16, 493 (1991). [CrossRef]

], two flat mirrors plus a telescope [13

13. S. Dobner, C. Cleff, C. Fallnich, and P. Gross, J. Chem. Phys. 137, 174201 (2012). [CrossRef]

,14

14. K. Misawa and T. Kobayashi, Opt. Lett. 20, 1550 (1995). [CrossRef]

], and three flat mirrors plus a telescope [21

21. Q. Zhong, X. Zhu, and J. T. Fourkas, Opt. Express 15, 6561 (2007). [CrossRef]

]. Inserting a telescope to increase the nonlinear signal introduces an additional inversion. Ray tracing in the horizontal plane of Fig. 1 reveals a common path because the beams undergo an even number (4) of left–right reversals within the Sagnac: one from each of the three mirrors plus one from the telescope. However, the telescope inversion makes counterpropagating images upside down relative to each other inside the Sagnac, allowing differential phase distortions, which are minimized by a 2 mm beam diameter centered on the common path horizontal plane. With one vertical inversion, all output images are upside down (similar to the horizontally reflected outputs for an odd number of mirrors [11

11. W. H. Steel, Interferometry (Cambridge University, 1967).

]), so spatial phase imperfections in the input beam cancel.

The final component of the 2D spectrometer is the signal detection in the Sagnac dark output (Fig. 1). The gold-coated beam splitter recombines the out-of-phase probe, E^c=t^E^i, and reference, E^r=r^E^i, where E^i is the field incident on the Sagnac beam splitter, to produce an attenuated LO, E^LO(ωt)=(t^t^+r^r^)E^i(ωt). The 2D signal copropagates with the LO and background terms, given by
I2D(ta,tb,ωt)=|r^r^[(E^i+E^(1))+r^r^*E^rrr(3)]+t^t^r^r^*E^crr(3)+t^t^[(E^i+E^(1))+(t^t^*E^ccc(3)+E^caa(3)+E^cbb(3))+(E^cba(3)+E^cab(3))]|2.
(1)
The amplitude-modulated 2D signal, E^2D(3)=E^cba(3)+E^cab(3), is the sum of rephasing (cba) and nonrephasing (cab) terms that are oppositely phase modulated with τ (subscripts are time-ordered right to left). If the spectral phases of pulses a and b differ only by the delay, ϕb(ω)=ϕa(ω)+ωτ, then the two phase-modulated signals add to produce a purely amplitude-modulated signal without phase shifting the underlying χ(3) response. E^2D(3) copropagates with the following fields: the τ-independent free induction decays t^t^E^(1)(ωt) (pulse c) and r^r^E^(1)(ωt) (reference); third-order saturated absorption signals from three interactions each with pulse c, t^t^*E^ccc(3), and the reference, r^r^*E^rrr(3); the third-order pump–probe signals from pumps a, E^caa(3), b, E^cbb(3), and the reference, E^crr(3). Except for differences arising from phase matching, third-order fields in Eq. (1) are of the form E^γβα(3)=iωtχ(3)E^γE^βE^α with wavevectors ks=kγ+kβkα=kc. For τ>0, ta=T|τ| and tb=T; for τ<0, ta=T and tb=T|τ|. The only terms with a τ dependence are one pump–probe field with pulse a or b as pump, E^PP(3)(T+|τ|,ωt), and the sum of 2D fields, E^2D(3) [3

3. C. H. Tseng, S. Matsika, and T. C. Weinacht, Opt. Express 17, 18788 (2009). [CrossRef]

].

The Sagnac interferometer beam splitter requires careful attention to ensure a π phase shift between dark outputs t^t^ and r^r^ while avoiding dispersion. The Brewster’s angle beam splitter (Fig. 1) has an 8nm thin film of gold deposited on a 1 mm thick BK7 substrate. The refractive index, n^=n+ik, of amorphous gold has k25×n [22

22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

] to ensure a nearly π phase shift (170°–171°, compared to 30° with inconel) between dark output pulses (t^t^ versus r^r^). Destructive interference in the dark output suppresses the in-phase component of the reference pulse and increases the phase error of the LO as the LO is attenuated. Near 1100 nm wavelength, the beam splitter absorbs 7%, reflects 37%, and transmits 56% of the incident pulse energy, yielding an LO phase error of 15° after accounting for six-fold attenuation.

2D spectra of readily available cyanine dyes were used to test the first femtosecond 2D FT spectrometer [23

23. J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001). [CrossRef]

] and have been replicated in testing new approaches to 2D FT spectroscopy in the visible [24

24. E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010). [CrossRef]

]. Because of this work, the form of the 2D spectrum is known for cyanine dyes, making them suitable for this first demonstration of 2D FT spectroscopy in the short-wave IR. The heptamethine cyanine infrared dye IR-26 has been previously characterized with steady-state absorption and photoluminescence spectroscopy [25

25. B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, and K. H. Drexhage, Appl. Phys. B 29, 15 (1982). [CrossRef]

,26

26. O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, J. Phys. Chem. Lett. 1, 2445 (2010). [CrossRef]

]. Here, a 30 fs pulse centered at 1100 nm is used to excite and probe dynamics at the red edge of the IR-26 spectrum in dichloroethane using degenerate, partially collinear 2D spectroscopy (flowing sample, 200 μm path length, maximum optical density (OD) 0.7 at 1080 nm). IR-26 has an excited-state lifetime of 22 ps, which is two orders of magnitude less than the 1.5 ns reference delay in the Sagnac; thus, E^crr(3) vanishes in Eq. (1). Following background subtraction of the τ-dependent pump–probe signals, E^caa(3) and E^cbb(3), in Eq. (1), an FT with respect to τ isolates the interference term E^2D(3)(ωt,ωτ,T)·E^LO*(ωt)+c.c.; division by |E^LO(ωt)| yields S^2Draw(ωt,ωτ,T).

The phase corrections of 2D spectra are simplified in the partially collinear geometry because the third pulse also acts as the LO. The only required phase correction in ωτ arises from the spectral phase difference, Δϕba(ωτ), between pulses b and a. Characterization of the Mach–Zehnder [15

15. T. L. Courtney, S. D. Park, R. J. Hill, and D. M. Jonas are preparing a manuscript to be called “Broadband, low-dispersion, Brewster’s angle interferometers.”

] yields a near-linear Δϕba(ωτ) that corresponds to the lack of a τ=0 sampling point in the PZT locking scheme; specifically, Δϕba(ωτ)=ωττmin, where τmin is the τ delay closest to zero. Phase shifting the raw 2D spectrum,
S^2D(ωt,ωτ,T)=S^2Draw(ωt,ωτ,T)exp[iΔϕba(ωτ)],
(2)
creates the 2D spectrum that would be generated by sampling at and symmetrically about τ=0. LO phase correction in ωt using 2D Kramers–Kronig relations amounts to less than 5% rms. The resulting real 2D correlation spectra of IR-26 are shown in Fig. 2 for all-parallel pulse polarizations. In the T=0 spectrum (left panel, Fig. 2), the diagonally elongated positive peak reflects the strong correlation between excitation frequency, ωτ, and detection frequency, ωt. Also, a slight shift above the diagonal and the off-diagonal, negative (blue) region are indicative of vibrational and solvent frequency memory [6

6. S. M. Gallagher Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489 (1999). [CrossRef]

]. By T=100fs relaxation time, nearly all correlation between ωτ and ωt is lost: the peak is purely positive, approaches a product line shape, and is shifted above the diagonal by the Stokes shift (right panel, Fig. 2). The performance of the 2D spectrometer is verified by agreement between experimental 2D spectra and predicted spectra at large T calculated with absorption line shapes, emission line shapes, and propagation-corrected pulse spectra [23

23. J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001). [CrossRef]

].

Fig. 2. Real, T=0fs (left) and T=100fs (right) 2D correlation spectra of IR-26 in dichloroethane with 30 fs pulses. At zero wait time, the diagonally elongated positive peak (red 10% contours, solid lines) reflects the strong correlation between the excitation frequency, ωτ, and signal frequency, ωt. A negative region (blue 10% contours, dotted lines) indicates vibrational and solvent frequency memory. Only the positive peak remains at 100 fs waiting time; this peak approaches a product line shape after a rapid loss of correlation between ωτ and ωt.

The 2D spectra in Fig. 2 measure nonlinear response tensor element RXXXX. Although the probe polarization is fixed, the pump pulse polarizations can be varied, for example to measure RXXZZ. Complementary to the Sagnac approach developed here, 2D spectra for tensor elements RXZXZ and RXZZX have been measured using a polarizer for background suppression [27

27. W. Xiong and M. T. Zanni, Opt. Lett. 33, 1371 (2008). [CrossRef]

].

The optimization of signal detection with a Sagnac interferometer is a useful feature of this 2D spectrometer design. The 8nm thin-film gold Sagnac beam splitter increases the ratio of the third-order signal to LO by up to a factor of six compared to the pump–probe geometry. This factor can be reduced (in the case of a large signal) by a slight misalignment of the Sagnac interferometer or increased (for a small signal) by using a beam-splitter coating with more even splitting in a desired frequency range (which requires a more accurate π phase shift in the dark output, obtainable with thin films of germanium). With suitable beam splitters, extension to 2D spectroscopy with a supercontinuum probe may be possible [28

28. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, Opt. Lett. 34, 1390 (2009). [CrossRef]

]. While the final transmission through the Sagnac beam splitter attenuates the signal, the LO is effectively attenuated even more: the destructive interference in the Sagnac creates a LO with 1/6 of both the intensity and laser power fluctuations of the original LO (pulse c). The ability to control and reduce the LO intensity would be especially useful in experiments on systems with weak 2D signals. The signal detection improvement, stability, and simplicity of this geometry have opened up a new wavelength region for 2D FT spectroscopy.

We thank Octavi Semonin (NREL) for coating the gold beam splitter and Giulio Cerullo for helpful discussions about the IR NOPA. This material is based upon work supported by the National Science Foundation under Grant No. CHE-1112365.

References

1.

D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003). [CrossRef]

2.

W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, J. Chem. Phys. 130, 164503 (2009). [CrossRef]

3.

C. H. Tseng, S. Matsika, and T. C. Weinacht, Opt. Express 17, 18788 (2009). [CrossRef]

4.

D. Brida, S. Bonora, C. Manzoni, M. Marangoni, P. Villoresi, S. De Silvestri, and G. Cerullo, Opt. Express 17, 12510 (2009). [CrossRef]

5.

M. Levenson and G. Eesley, Appl. Phys. A 19, 1 (1979).

6.

S. M. Gallagher Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489 (1999). [CrossRef]

7.

E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, Opt. Express 15, 16681 (2007). [CrossRef]

8.

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, Opt. Express 16, 17420 (2008). [CrossRef]

9.

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, Opt. Lett. 32, 2966 (2007). [CrossRef]

10.

J. Helbing and P. Hamm, J. Opt. Soc. Am. B 28, 171 (2011). [CrossRef]

11.

W. H. Steel, Interferometry (Cambridge University, 1967).

12.

R. Trebino and C. C. Hayden, Opt. Lett. 16, 493 (1991). [CrossRef]

13.

S. Dobner, C. Cleff, C. Fallnich, and P. Gross, J. Chem. Phys. 137, 174201 (2012). [CrossRef]

14.

K. Misawa and T. Kobayashi, Opt. Lett. 20, 1550 (1995). [CrossRef]

15.

T. L. Courtney, S. D. Park, R. J. Hill, and D. M. Jonas are preparing a manuscript to be called “Broadband, low-dispersion, Brewster’s angle interferometers.”

16.

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999). [CrossRef]

17.

P. Baum and E. Riedle, J. Opt. Soc. Am. B 22, 1875 (2005). [CrossRef]

18.

R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993). [CrossRef]

19.

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, Opt. Lett. 26, 1155 (2001). [CrossRef]

20.

M. K. Yetzbacher, T. L. Courtney, W. K. Peters, K. A. Kitney, E. R. Smith, and D. M. Jonas, J. Opt. Soc. Am. B 27, 1104 (2010). [CrossRef]

21.

Q. Zhong, X. Zhu, and J. T. Fourkas, Opt. Express 15, 6561 (2007). [CrossRef]

22.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

23.

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001). [CrossRef]

24.

E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010). [CrossRef]

25.

B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, and K. H. Drexhage, Appl. Phys. B 29, 15 (1982). [CrossRef]

26.

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, J. Phys. Chem. Lett. 1, 2445 (2010). [CrossRef]

27.

W. Xiong and M. T. Zanni, Opt. Lett. 33, 1371 (2008). [CrossRef]

28.

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, Opt. Lett. 34, 1390 (2009). [CrossRef]

OCIS Codes
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: October 24, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: December 12, 2013
Published: January 23, 2014

Citation
Trevor L. Courtney, Samuel D. Park, Robert J. Hill, Byungmoon Cho, and David M. Jonas, "Enhanced interferometric detection in two-dimensional spectroscopy with a Sagnac interferometer," Opt. Lett. 39, 513-516 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-3-513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003). [CrossRef]
  2. W. Kuehn, K. Reimann, M. Woerner, and T. Elsaesser, J. Chem. Phys. 130, 164503 (2009). [CrossRef]
  3. C. H. Tseng, S. Matsika, and T. C. Weinacht, Opt. Express 17, 18788 (2009). [CrossRef]
  4. D. Brida, S. Bonora, C. Manzoni, M. Marangoni, P. Villoresi, S. De Silvestri, and G. Cerullo, Opt. Express 17, 12510 (2009). [CrossRef]
  5. M. Levenson and G. Eesley, Appl. Phys. A 19, 1 (1979).
  6. S. M. Gallagher Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489 (1999). [CrossRef]
  7. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, Opt. Express 15, 16681 (2007). [CrossRef]
  8. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, Opt. Express 16, 17420 (2008). [CrossRef]
  9. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, Opt. Lett. 32, 2966 (2007). [CrossRef]
  10. J. Helbing and P. Hamm, J. Opt. Soc. Am. B 28, 171 (2011). [CrossRef]
  11. W. H. Steel, Interferometry (Cambridge University, 1967).
  12. R. Trebino and C. C. Hayden, Opt. Lett. 16, 493 (1991). [CrossRef]
  13. S. Dobner, C. Cleff, C. Fallnich, and P. Gross, J. Chem. Phys. 137, 174201 (2012). [CrossRef]
  14. K. Misawa and T. Kobayashi, Opt. Lett. 20, 1550 (1995). [CrossRef]
  15. T. L. Courtney, S. D. Park, R. J. Hill, and D. M. Jonas are preparing a manuscript to be called “Broadband, low-dispersion, Brewster’s angle interferometers.”
  16. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999). [CrossRef]
  17. P. Baum and E. Riedle, J. Opt. Soc. Am. B 22, 1875 (2005). [CrossRef]
  18. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993). [CrossRef]
  19. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, Opt. Lett. 26, 1155 (2001). [CrossRef]
  20. M. K. Yetzbacher, T. L. Courtney, W. K. Peters, K. A. Kitney, E. R. Smith, and D. M. Jonas, J. Opt. Soc. Am. B 27, 1104 (2010). [CrossRef]
  21. Q. Zhong, X. Zhu, and J. T. Fourkas, Opt. Express 15, 6561 (2007). [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001). [CrossRef]
  24. E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010). [CrossRef]
  25. B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, and K. H. Drexhage, Appl. Phys. B 29, 15 (1982). [CrossRef]
  26. O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, J. Phys. Chem. Lett. 1, 2445 (2010). [CrossRef]
  27. W. Xiong and M. T. Zanni, Opt. Lett. 33, 1371 (2008). [CrossRef]
  28. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, Opt. Lett. 34, 1390 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited