OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 6 — Mar. 15, 2014
  • pp: 1669–1672
« Show journal navigation

Direct carrier-envelope phase control of an amplified laser system

Tadas Balčiūnas, Tobias Flöry, Andrius Baltuška, Tomas Stanislauskas, Roman Antipenkov, Arūnas Varanavičius, and Günter Steinmeyer  »View Author Affiliations


Optics Letters, Vol. 39, Issue 6, pp. 1669-1672 (2014)
http://dx.doi.org/10.1364/OL.39.001669


View Full Text Article

Acrobat PDF (682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Direct carrier-envelope phase stabilization of an Yb:KGW MOPA laser system is demonstrated with a residual phase jitter reduced to below 100 mrad, which compares favorably with previous stabilization reports, both of amplified laser systems as well as of ytterbium-based oscillators. This novel stabilization scheme relies on a frequency synthesis scheme and a feed-forward approach. The direct stabilization of a sub-MHz frequency comb from a CPA amplifier not only reduces the phase noise but also greatly simplifies the stabilization setup.

© 2014 Optical Society of America

Since its original demonstration over a decade ago, carrier-envelope phase (CEP) control [1

1. S. T. Cundiff, J. Phys. D 35, R43 (2002).

,2

2. T. Fuji, J. Rauschenberger, C. Gohle, A. Apolonski, T. Udem, V. S. Yakovlev, G. Tempea, T. W. Hänsch, and F. Krausz, New J. Phys. 7, 116 (2005). [CrossRef]

] of mode-locked lasers has come of age, with a recently demonstrated timing jitter between the carrier and the envelope pushed down to the sub-10-attosecond range [3

3. B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, Opt. Lett. 36, 4146 (2011). [CrossRef]

,4

4. F. Lücking, A. Assion, A. Apolonski, F. Krausz, and G. Steinmeyer, Opt. Lett. 37, 2076 (2012). [CrossRef]

]. Despite such impressive progress, CEP control is still limited to a rather narrow class of lasers, including Ti:sapphire and some other selected broadband solid-state materials as well as some mode-locked fiber lasers. CEP stabilization of high-power Yb systems has proven challenging due to rather long cavities and narrow gain bandwidth as well as the long upper state lifetime of the laser transition [5

5. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, Opt. Lett. 36, 4746 (2011). [CrossRef]

,6

6. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]

]. Moreover, CEP control becomes increasingly complex for amplified laser sources with energies in the mJ range [7

7. G. Gademann, F. Plé, P. M. Paul, and M. J. J. Vrakking, Opt. Express 19, 24922 (2011). [CrossRef]

]. Typically, stabilization of a CPA laser source relies on an intricate combination of two servo loops: a fast oscillator loop and a slow amplifier loop [8

8. A. Baltuška, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, IEEE J. Sel. Top. Quantum Electron. 9, 972 (2003). [CrossRef]

]. While the second loop is necessary to remove residual phase drift in the amplifier, unfortunately, it also corrupts the residual phase noise in the amplified pulse train due to the limited feedback bandwidth as a consequence of a low repetition rate of the amplifier and a slow readout of a nonlinear phase meter [9

9. C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, Opt. Lett. 30, 2487 (2005). [CrossRef]

]. While oscillators can now be stabilized down to 10mrad residual CEP jitter [3

3. B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, Opt. Lett. 36, 4146 (2011). [CrossRef]

], 100 mrad stability for an amplified laser source already appears to be a challenge. Here we demonstrate a direct and versatile method to stabilize the CEP of an Yb:KGW MOPA laser system, resulting in sub-100 mrad stability. To the best of our knowledge, this value surpasses most previously measured CEP jitter for Ti:sapphire CPA systems as well as previously reported stabilization of Yb-based laser systems.

Analyzing the problems of the CEP control in amplified lasers, the measurement of CEP after amplification appears to be a major bottleneck [10

10. S. Koke, C. Grebing, B. Manschwetus, and G. Steinmeyer, Opt. Lett. 33, 2545 (2008). [CrossRef]

]. Typically, a spectral-interferometry-based scheme [11

11. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nat. Photonics 4, 462 (2010). [CrossRef]

] is employed for the purpose which requires averaging over 10 laser shots to avoid detrimental feedback from detection shot noise contributions. The bottleneck in this detection process is the number of useful photons in the narrow second-harmonic generation (SHG) conversion bandwidth of the f2f interferometer [12

12. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001). [CrossRef]

,13

13. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999). [CrossRef]

]. As shot-noise limited CEP detection appears much less challenging [11

11. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nat. Photonics 4, 462 (2010). [CrossRef]

] for the oscillator heterodyning scheme [13

13. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999). [CrossRef]

] than for the spectral interferometry scheme used with amplifiers [12

12. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001). [CrossRef]

], we chose to combine the virtues of both approaches, detecting the CEP of a high-repetition-rate amplifier with the heterodyne scheme that has only been applied to oscillators so far.

In our experiments, we employed a commercial Yb:KGW regenerative CPA system (Light Conversion Ltd.) seeded by a solid-state Yb:KGW Kerr-lens mode-locked oscillator [14

14. T. Balčiunas, O. D. Mücke, P. Mišeikis, G. Andriukaitis, A. Pugžlys, L. Giniunas, R. Danielius, R. Holzwarth, and A. Baltuška, Opt. Lett. 36, 3242 (2011). [CrossRef]

], see Fig. 1 for the general setup. The oscillator operates at a repetition rate of frep=75MHz. The amplifier repetition rate famp can be freely tuned up to 1 MHz. With the latter settings, the amplifier delivers an average power of 6 W and a pulse duration <190fs. Our CEP detection scheme is based on in-line interferometers, as they are customarily used for amplifier measurements but have also been approved for use with oscillators [15

15. M. Pawłowska, F. Ozimek, P. Fita, and C. Radzewicz, Rev. Sci. Instrum. 80, 083101 (2009). [CrossRef]

]. The optical layout of our in-loop (IL) interferometer is shown in Fig. 2. Supercontinuum is generated in bulk sapphire with μJ input energy from the amplifier. The resulting white light is collimated using a spherical mirror. A pair of wedges allows for adjustment of the relative group delay of the f and 2f components. The light is then refocused into a BBO crystal for SHG, phase-matched at 530 nm. This results in orthogonally polarized f and 2f components. The group delay between these components is then equalized in a 10 mm long birefringent quartz block. Finally, a polarizer heterodynes both polarizations and the beam is spectrally filtered before photo detection. A third f2f interferometer after the oscillator was used together with a phase-locked loop (PLL) for characterization of the amplifier noise discussed below. This interferometer is not part of the direct amplifier CEP stabilization scheme.

Fig. 1. General scheme of the frequency synthesis for the stabilization of a sub-MHz frequency comb from a regenerative amplifier (RA). The dashed box indicates a part of the setup that is necessary only for an in-depth characterization of amplifier noise.
Fig. 2. Optical scheme of the in-line f2f interferometer based on white light generation (WLG) in a bulk sapphire crystal for beat-note detection. P, polarizer; SM, spherical mirror.

The measured CEP beat note frequency fCEO at the output of the interferometer lies in the range between 0 and 500 kHz. For CEP stabilization, we employed the feed-forward scheme [11

11. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nat. Photonics 4, 462 (2010). [CrossRef]

]. This scheme employs an acousto-optic frequency shifter (AOFS) which is normally directly driven at the fundamental beat note fCEO. Given that our AOFS has a center frequency of 300 MHz, we have to use a higher-order beat fAOFS=Nfamp+fCEO, with an integer number N300. In this case, direct filtering of the AOFS driver signal becomes very challenging. Detecting the interferometer output with a >300MHz bandwidth leads to a tightly spaced comb. Compared to a comb signal with frep spacing, the energy of the individual beat note is about 2 orders of magnitude lower which leads to a reduction of the electronic signal-to-noise ratio by 40 dB. The solution here is to use a slow photodiode with large detection area and synthesize fAOFS by mixing the fundamental beat with a suitable harmonic of the amplifier repetition rate. The photodiode used in the experiments exhibits a 13mm2 active area (Thorlabs PDA36A, used at 75 transimpedance). The capacity of the diode in combination with the high gain act as a lowpass filter and limit the bandwidth to 150kHz. This bandwidth is sufficient for measuring the fundamental beat over a significant part of the free spectral range. The noise-equivalent power (NEP) of our photodectector is specified as 1pW/Hz. With a measured power of 35 μW on the detector, we therefore expect that shot noise (4pW/Hz) dominates the noise floor. Identical signal strength of the f and 2f signal provided and assuming the absence of out-of-band contaminations, these settings should readily enable a beat note visibility of more than 60 dB in a 100 kHz bandwidth which clearly illustrates the potential of our method.

We synthesize the driver signal from the fourth harmonic of the oscillator repetition rate and the amplifier carrier-envelope frequency, i.e., fAOFS=4frep+fCEO. We employ an intermediate frequency scheme to suppress mirror frequencies and other spurious contributions, see Fig. 3. This scheme employs a narrow bandpass filter (RF Monolithics, PX1004-1, 82.2 MHz center frequency, 80 kHz 3 dB bandwidth). In the first mixing step, the fundmental beat is upconverted to the center frequency of the filter using a local oscillator at 82MHz. Figure 4 shows the measured rf spectrum prior to narrow bandpass filtering. For comparison, Fig. 4 also shows the signal that is obtained when the interference is disabled by inserting a glass plate into the beam path of the f2f interferometer. The observed visibility of the beat note indicates that residual phase jitters well below 100 mrad are possible [16

16. B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photon. Rev., doi:10.1002/lpor.201300163 (to be published). [CrossRef]

].

Fig. 3. (a) A general scheme of the frequency synthesis for the stabilization of a sub-MHz frequency comb from a regenerative amplifier (RA). (b) The narrowband tunable frequency filter scheme.
Fig. 4. Radio frequency spectrum after mixer M1, where the signal from the photodetector is upconverted by mixing it with a local oscillator. For comparison, a reference spectrum is shown where the f and 2f components are delayed, and the beat note is suppressed. Beat note visibility is 55 dB in a resolution bandwidth of 6 Hz.

Using out-of-loop characterization with a second inline interferometer, we carefully analyzed the performance of our CEP stabilization scheme, see Fig. 5. This analysis indicates a residual rms jitter of σ=87mrad. The inset of Fig. 5 shows a histogram representation of raw spectral interference patterns to further illustrate the surprisingly low phase jitters obtained with our scheme. It should be noted that the bandwidth of our scheme relies on the narrowest filter (80 kHz bandwidth) in the frequency synthesis scheme (Fig. 3). Moreover, the acoustic travel time in the AOFS is of the order of a microsecond and certainly did not limit the obtained performance.

Fig. 5. (a) Out-of-loop CEP jitter measurement after the amplifier. (b) Inset: f2f interferogram fringes. The spectrometer integration time was kept at a minimum and averaging is done over 6 laser pulses.

Generally, CEP noise in an amplified laser system may originate from the oscillator or from the stretcher/compressor pair and the regenerative amplifier (RA) itself. These two contributions, Δφosc and Δφcpa, respectively, are noncorrelated. The total resulting phase jitter amounts to
Δφtotal=Δφosc2+Δφcpa2.
(1)
In order to evaluate the relative strength of these two contributions and for analysis of the requirements for the feed-back loop bandwidth, we isolated the amplifier phase noise contributions Δφcpa by locking the oscillator offset frequency using a conventional feedback PLL, similar to [14

14. T. Balčiunas, O. D. Mücke, P. Mišeikis, G. Andriukaitis, A. Pugžlys, L. Giniunas, R. Danielius, R. Holzwarth, and A. Baltuška, Opt. Lett. 36, 3242 (2011). [CrossRef]

]. In this configuration, a third f2f interferometer is used after the oscillator (dashed box in Fig. 1) for CEP locking, and the f2f interferometer after the amplifier (cf. Fig. 2) acts as an out-of-loop interferometer for amplifier- and stretcher/compressor-induced noise characterization. The resulting phase noise spectrum of the CEP beat note (fCEO=150kHz, famp=600kHz) is shown in Fig. 6. The sensitivity of the measurement apparatus was checked by inserting an 10mm thick glass plate into the beam after white light generation in order to delay the f and the 2f component, thereby suppressing their interference. With the exception of a single artifact at 3.3 kHz, this setup provides a phase signal-to-noise ratio in excess of 30 dB for frequencies up to 10 kHz.

Fig. 6. Phase noise spectrum density (PSD) and integrated phase noise measurement of an amplifier running at repetition rate famp=600kHz. The noise floor (gray line) is obtained by delaying the two colors in the f2f interferometer and represents the measurement sensitivity.

The measured phase jitter corresponds to 230mrad which is about three times larger than the value deduced from Fig. 5. Despite the slightly different measurement methods, this finding clearly corroborates the superior noise performance of our novel direct amplifier stabilization approach. In principle, the origin of this noise may either be the low sensitivity of the oscillator f2f interferometer or a large amount of excess noise in the amplifier. If the latter were true, one would expect to see a structured noise spectrum rather than a flat plateau. In particular, the practical absence of line frequency harmonics implies that we are actually seeing the limitations of the oscillator stabilization here [16

16. B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photon. Rev., doi:10.1002/lpor.201300163 (to be published). [CrossRef]

]. In any case, it appears challenging to reduce this broadband 230 mrad noise signature with the traditional slow spectral interferometry approach [12

12. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001). [CrossRef]

] typically employed for amplifier stabilization.

Here we demonstrated unprecedented sub-100 mrad CEP jitter for an amplified ytterbium-based amplifier system. The scheme is currently applicable for intermediate laser pulse energy in the μJ range, essentially limited by self-phase modulation and optical damage in the AOFS. Investigations are underway to remove the acousto-optic component from the unattenuated amplifier output which will eliminate the corresponding power limitations. A further constraint arises due to the bandwidth of the noise spectrum of the oscillator [9

9. C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, Opt. Lett. 30, 2487 (2005). [CrossRef]

]. The current scheme enables phase noise removal at frequency components up to 1/2 of the amplifier repetition rate. Given the advantage of rf heterodyning, the scheme is most effective in laser amplifiers operating at a higher repetition rate, 10 kHz or above. In conclusion, our scheme significantly widens the scope of feed-forward stabilization. High pulse energy 200fs Yb amplifiers offer an efficient way to attain few-cycle pulses through nonlinear pulse compression schemes and optical parametric amplifiers, with the latter being seeded and pumped by a single Yb laser source. Demonstration of a sub-100-mrad CEP jitter at the Yb amplifier output, therefore, radically simplifies the task of deriving usable CEP-stable few-cycle waveforms from Yb driver lasers. We therefore think that our novel scheme paves a way to combine the efficiency and output power scalability of ytterbium-based materials with the precision previously only obtained with Ti:sapphire-based approaches.

This work was funded by ERC Grant 280202, FWF Grant I557-N16, Lithuanian Agency for Science, Innovation and Technology (Grant No. 31V-29), and EU Seventh Framework Programme (Grant Agreement No. 284464).

References

1.

S. T. Cundiff, J. Phys. D 35, R43 (2002).

2.

T. Fuji, J. Rauschenberger, C. Gohle, A. Apolonski, T. Udem, V. S. Yakovlev, G. Tempea, T. W. Hänsch, and F. Krausz, New J. Phys. 7, 116 (2005). [CrossRef]

3.

B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, Opt. Lett. 36, 4146 (2011). [CrossRef]

4.

F. Lücking, A. Assion, A. Apolonski, F. Krausz, and G. Steinmeyer, Opt. Lett. 37, 2076 (2012). [CrossRef]

5.

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, Opt. Lett. 36, 4746 (2011). [CrossRef]

6.

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]

7.

G. Gademann, F. Plé, P. M. Paul, and M. J. J. Vrakking, Opt. Express 19, 24922 (2011). [CrossRef]

8.

A. Baltuška, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, IEEE J. Sel. Top. Quantum Electron. 9, 972 (2003). [CrossRef]

9.

C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, Opt. Lett. 30, 2487 (2005). [CrossRef]

10.

S. Koke, C. Grebing, B. Manschwetus, and G. Steinmeyer, Opt. Lett. 33, 2545 (2008). [CrossRef]

11.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nat. Photonics 4, 462 (2010). [CrossRef]

12.

M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001). [CrossRef]

13.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999). [CrossRef]

14.

T. Balčiunas, O. D. Mücke, P. Mišeikis, G. Andriukaitis, A. Pugžlys, L. Giniunas, R. Danielius, R. Holzwarth, and A. Baltuška, Opt. Lett. 36, 3242 (2011). [CrossRef]

15.

M. Pawłowska, F. Ozimek, P. Fita, and C. Radzewicz, Rev. Sci. Instrum. 80, 083101 (2009). [CrossRef]

16.

B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photon. Rev., doi:10.1002/lpor.201300163 (to be published). [CrossRef]

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Ultrafast Optics

History
Original Manuscript: December 6, 2013
Manuscript Accepted: February 10, 2014
Published: March 14, 2014

Citation
Tadas Balčiūnas, Tobias Flöry, Andrius Baltuška, Tomas Stanislauskas, Roman Antipenkov, Arūnas Varanavičius, and Günter Steinmeyer, "Direct carrier-envelope phase control of an amplified laser system," Opt. Lett. 39, 1669-1672 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-6-1669


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. T. Cundiff, J. Phys. D 35, R43 (2002).
  2. T. Fuji, J. Rauschenberger, C. Gohle, A. Apolonski, T. Udem, V. S. Yakovlev, G. Tempea, T. W. Hänsch, and F. Krausz, New J. Phys. 7, 116 (2005). [CrossRef]
  3. B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, Opt. Lett. 36, 4146 (2011). [CrossRef]
  4. F. Lücking, A. Assion, A. Apolonski, F. Krausz, and G. Steinmeyer, Opt. Lett. 37, 2076 (2012). [CrossRef]
  5. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, Opt. Lett. 36, 4746 (2011). [CrossRef]
  6. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 20, 23535 (2012). [CrossRef]
  7. G. Gademann, F. Plé, P. M. Paul, and M. J. J. Vrakking, Opt. Express 19, 24922 (2011). [CrossRef]
  8. A. Baltuška, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, IEEE J. Sel. Top. Quantum Electron. 9, 972 (2003). [CrossRef]
  9. C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hänsch, Opt. Lett. 30, 2487 (2005). [CrossRef]
  10. S. Koke, C. Grebing, B. Manschwetus, and G. Steinmeyer, Opt. Lett. 33, 2545 (2008). [CrossRef]
  11. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, Nat. Photonics 4, 462 (2010). [CrossRef]
  12. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001). [CrossRef]
  13. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999). [CrossRef]
  14. T. Balčiunas, O. D. Mücke, P. Mišeikis, G. Andriukaitis, A. Pugžlys, L. Giniunas, R. Danielius, R. Holzwarth, and A. Baltuška, Opt. Lett. 36, 3242 (2011). [CrossRef]
  15. M. Pawłowska, F. Ozimek, P. Fita, and C. Radzewicz, Rev. Sci. Instrum. 80, 083101 (2009). [CrossRef]
  16. B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photon. Rev., doi:10.1002/lpor.201300163 (to be published). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited