OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 7 — Apr. 1, 2014
  • pp: 2141–2144
« Show journal navigation

High-efficiency B4C/Mo2C alternate multilayer grating for monochromators in the photon energy range from 0.7 to 3.4  keV

Fadi Choueikani, Bruno Lagarde, Franck Delmotte, Michael Krumrey, Françoise Bridou, Muriel Thomasset, Evgueni Meltchakov, and François Polack  »View Author Affiliations


Optics Letters, Vol. 39, Issue 7, pp. 2141-2144 (2014)
http://dx.doi.org/10.1364/OL.39.002141


View Full Text Article

Acrobat PDF (699 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An alternate multilayer (AML) grating has been prepared by coating an ion etched lamellar grating with a B4C/Mo2C multilayer (ML) having a layer thickness close to the groove depth. Such a structure behaves as a 2D synthetic crystal and can reach very high efficiencies when the Bragg condition is satisfied. This AML coated grating has been characterized at the SOLEIL Metrology and Tests Beamline between 0.7 and 1.7 keV and at the four-crystal monochromator beamline of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II between 1.75 and 3.4 keV. A peak diffraction efficiency of nearly 27% was measured at 2.2 keV. The measured efficiencies are well reproduced by numerical simulations made with the electromagnetic propagation code CARPEM. Such AML gratings, paired with a matched ML mirror, constitute efficient monochromators for intermediate energy photons. They will extend the accessible energy for many applications as x-ray absorption spectroscopy or x-ray magnetic circular dichroism experiments.

© 2014 Optical Society of America

The domain of synchrotron radiation features a transition in beamline technology between hard and soft x-rays. In the hard x-ray range, the energy selection is performed by Bragg reflection on single crystals. The accessible energy range is limited toward low energies by the unit cell size of available crystal and their stability under radiation (2keV for Si, 1.75keV for InSb) [1

1. T. M. Mooney, T. Toellner, W. Sturhahn, E. E. Alp, and S. D. Shastri, Nucl. Instrum. Methods Phys. Res., Sect. A 347, 348 (1994). [CrossRef]

,2

2. Y. V. Shvyd’ko, S. Stoupin, A. Cunsolo, A. H. Said, and X. Huang, Nat. Phys. 6, 196 (2010). [CrossRef]

]. For soft x-rays, reflective gratings with lamellar, or more often, triangular (blazed) groove profiles are used under grazing incidence. Despite innovations in grating fabrication processes [3

3. D. Cocco, A. Bianco, B. Kaulich, F. Schaefers, M. Mertin, G. Reichardt, B. Nelles, and K. F. Heidemann, AIP Conf. Proc. 879, 497 (2007). [CrossRef]

,4

4. B. Lagarde, F. Sirotti, A. Taleb-Ibrahimi, C. Miron, and F. Polack, J. Phys. Conf. Ser. 425, 152022 (2013). [CrossRef]

], the low efficiency of gratings still limits their use of energy above approximately 2.2 keV. Nevertheless, high-efficiency diffraction gratings are of prime importance for some applications in the energy range up to 3.5 keV. For example, x-ray absorption spectroscopy and x-ray magnetic circular dichroism experiments at M-edges of the rare earth elements and at the K-edge of sulfur would benefit from alternate multilayer (AML) gratings.

At lower energy ranges, in the domain of extreme ultraviolet, multilayer (ML)-coated lamellar gratings have been proposed as a way to enhance the efficiency [5

5. J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, and W. R. Hunter, Appl. Opt. 36, 8206 (1997). [CrossRef]

,6

6. M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, and W. R. Hunter, Appl. Opt. 22, 834 (1997).

]. Recently, ML-coated blazed gratings have been distinguished [7

7. D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, C. H. Chang, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, L. Zipp, and H. A. Padmore, Opt. Lett. 2615, 35 (2010).

9

9. D. L. Voronov, E. H. Anderson, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Opt. Lett. 37, 1628 (2012). [CrossRef]

] with a reported diffraction efficiency approximately 44% at 13.1 nm (95eV). In the soft x-rays domain, lamellar ML amplitude gratings have been described, but the reported efficiency was only around 8% at 1.5 keV [10

10. R. Benbalagh, J.-M. André, R. Barchewitz, Ph. Jonnard, G. Julié, L. Mollard, G. Rolland, C. Remond, Ph. Troussel, R. Marmoret, and E. O. Filatova, Nucl. Instrum. Methods Phys. Res. A 541, 590 (2005). [CrossRef]

,11

11. R. Benbalagh, J.-M. André, R. Barchewitz, M.-F. Ravet, A. Raynal, F. Delmotte, F. Bridou, G. Julié, A. Bosseboeuf, and Ph. Troussel, Nucl. Instrum. Methods Phys. Res. A 458, 650 (2001). [CrossRef]

]. Ways to improve the efficiency and selectivity of blazed grating in this spectral range were also shown [12

12. A. Bianco, G. Sostero, B. Nelles, K. F. Heidemann, and D. Cocco, Proc. SPIE 5918, 591810 (2005). [CrossRef]

,13

13. D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. A. Artemiev, and H. A. Padmore, Proc. SPIE 8848, 88480Q (2013). [CrossRef]

]. However, producing a low blaze angle 1 deg or less as required is a difficult task. Additionally, maintaining the groove profile geometry on the large surface needed for implementation in a beamline monochromator is even more challenging. An alternative would be using an AML grating [14

14. F. Polack, M. Idir, E. Jourdain, and A. Liard-Cloup, “Two-dimensional diffraction network with alternating multilayer stacks and method for the production thereof and spectroscopic devices comprising said networks,” European patent applicationEP1700141 (July 17, 2005).

]. As shown in Fig. 1, the AML grating presents a double periodicity at nanometer scale. In the plane of the surface, the period is the pitch p of the laminar grating while it is the 2d spacing of the ML in the vertical direction. Therefore, an AML grating has properties similar to a crystal with the advantage of the freedom of choosing the periodicities.

Fig. 1. Cross-section of a simple binary model of an ideal AML grating, realized on a lamellar grating of equal lands and grooves by deposition of an ML whose thickness of each material is equal to the grove depth d. Also indicated are the pitch p and the groove width c of the grating. The oblique straight line marks the orientation of the (1,1) Bragg plane. The unit cell of the ideal lattice is shown in the right inset.

In the ideal case depicted in Fig. 1, a perfect laminar profile is coated with a perfect ML and all the layers have a thickness equal to the grating groove depth. In the cross-section of the grating, the two materials of the ML alternate are in a checkerboard structure and the Bragg planes are defined by their angle with respect to the grating plane:
θ(m,n)=tan1(2mdnp),
(1)
where m and n are the Miller indices (respectively along z and x axes) of the diffraction orders in the reciprocal lattice. The AML grating should offer a high-efficiency for the first diffraction order and reject others orders. As for crystals, the diffraction efficiency of the different orders depends on the symmetry of the unit cell (see the inset of Fig. 1) and on the optical constants of the involved materials [15

15. F. Polack, B. Lagarde, M. Idir, A. Liard Cloup, and E. Jourdain, AIP Conf. Proc. 879, 639 (2007). [CrossRef]

]. Thus, the performance of AML gratings relies on an agreement between the thicknesses of each stacked layer and the depth of etching, as well as on the refractive index of each material.

Fig. 2. CARPEM computations of diffraction efficiencies of the same lamellar 2400lines/mm grating with a groove depth d=2.5nm, a duty cycle Γ=c/p=0.48, coated with a 30 period ML, with materials and thicknesses (nm) as indicated in the graph legend.

An AML grating was fabricated by coating a B4C/Mo2C ML on a grating surface having a laminar groove profile. HORIBA Jobin Yvon fabricated this grating by ion-etching silicon substrate. The fabrication process does not affect the micro-roughness of the high polished substrate. Thanks to an absolute calibration given by a calibration transfer from the standard AFM of the Laboratoire National de Métrologie et d’Essais [21

21. S. Ducourtieux and B. Poyet, Meas. Sci. Technol. 22, 094010 (2011). [CrossRef]

] to the atomic force microscopy (AFM) of Synchrotron SOLEIL, the accuracy of the measurements of the height of the grating was better than ±0.1nm. Table 1 summarizes the features of the laminar grating substrate. It shows that the laminar grating actually presents a trapeze shaped profile which, due the very shallow height, is characterized by a slope around 4 deg, which actually corresponds to an inclined area of only 17%.

Table 1. AFM Measurements Performed on Lamellar Grating Used as Substratea

table-icon
View This Table

A magnetron sputtering deposition system described in [19

19. F. Choueikani, F. Bridou, B. Lagarde, E. Meltchakov, F. Polack, P. Mercere, and F. Delmotte, Appl. Phys. A 111, 191 (2013). [CrossRef]

,22

22. J. Gautier, F. Delmotte, F. Bridou, M. F. Ravet, F. Varniere, M. Rouilliay, A. Jerome, and I. Vickridge, Appl. Phys. A 88, 719 (2007). [CrossRef]

] was used to deposit the B4C/Mo2C ML on the silicon laminar grating. Before the sputtering process, the chamber of preparation was pumped down to a base pressure of 7×108mbar. The sputtering was performed at an argon gas pressure of 2×103mbar. The targets size was 200mm×80mm2. The radio-frequency power was 150 W for the B4C target and the direct current for the Mo2C target was 0.07 A. The deposition rate was carefully calibrated using Cu-Kα grazing incidence reflectometry. It gives a good control on the achieved period with respect to the target value. In our case of the 2400lines/mm grating, the groove depth was measured to be 2.51 nm and the target period was fixed to 5.0nm. The duty cycle Γ was measured over the surface to vary between 0.44 and 0.48, slightly below the optimum value of 0.5 (for more details see Table 1). After the fabrication, a grazing incidence reflectometry was performed with the incidence plane parallel to the grating lines to avoid diffraction. We obtained 2.72 and 2.64 nm for the respective Mo2C and B4C thicknesses, hence a period of 5.36 nm.

Fig. 3. Measured and calculated (with a rectangular profile) efficiency of the first diffraction order versus the photon energy in the range from 0.7 to 3.4 keV for a grating rotation angle Ω=0.692deg and a duty cycle Γ=0.48.
Fig. 4. Detector scan measured at the PTB FCM beamline for a constant incidence of 7.8 deg, a fixed energy of 2.2 keV and Ω of 0.692 deg satisfying the Bragg condition.

Figure 4 shows a detector scan at a fixed energy of 2.2 keV and at a fixed incidence angle of 7.8 deg. It illustrates the preferential coupling of almost all the incident flux into the first diffraction order when the Bragg condition is satisfied, which is a signature of 2D diffraction and explains why AML gratings can have very large efficiencies.

In Fig. 5, the measured reflectance of the first diffraction order at 2.2 keV is compared to a CARPEM fit assuming a perfect rectangular profile of the grooves and a perfect replication of this profile by the deposited ML. In the fitting process, the reflectance is most sensitive to the respective thickness of Mo2C and B4C. Small changes of thicknesses result in a shift of the angle of maximum reflectivity. The obtained thicknesses agree with grazing Cu-Kα measurements to better than 0.1%. The width of the profile depends on the number of layer periods. An almost perfect agreement is found for 30 periods. The grating duty cycle Γ affects the peak efficiency. The best agreement was obtained for Γ=0.45. The measured peak reflectance amounts to around 85% of the calculated maximum. The comparison confirms the good agreement between the measured efficiency and the best-fit simulations, as shown on Fig. 3. The difference between experiment and simulation can be explained by the rectangular profile assumption in the simulation, while the real profile is trapezoidal. In addition, the other imperfections of the structure, such as the interdiffusion and the interfacial roughness in the range of 0.1 nm, can contribute to reducing the efficiency from the computed 31% with c/p=0.45 to the measured 27%. Unfortunately, the grating imperfections concerning geometry or roughness cannot be modeled by the CARPEM code in its present development stage.

Fig. 5. Reflectivity profile of the first diffraction order at 2.2 keV. The values measured at PTB FCM beamline are compared to CARPEM simulations with the same parameters as in Fig. 3.

We showed here the design realization and characterization of a B4C/Mo2C AML grating with a high-efficiency between 1 and 3.4 keV. Good agreement between calculated and measured performance was achieved. This AML grating, paired with a ML mirror of the same deviation, has been successfully installed into the DEIMOS beamline monochromator [25

25. P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu, F. Deschamps, T. Moreno, F. Polack, B. Lagarde, J.-P. Daguerre, F. Marteau, F. Scheurer, L. Joly, J. P. Kappler, and B. Mulle, Rev. Sci. Instrum. 85, 013106 (2014). [CrossRef]

]. We are currently studying other ML material combinations in order to extend the high-efficiency of such monochromator at energy up to 5 keV.

This work is supported by a grant from the RTRA (réseaux thématiques de recherche avancée) program “Triangle de la Physique.” The deposition and the characterization of the multilayers were performed on CEMOX (Centrale d’Elaboration et de Métrologie d’Optique X), a platform of the LUMAT federation (CNRS FR2764). The authors thank Stefanie Marggraf and Levent Cibik for their help during the experiments at FCM beamline of PTB at BESSY II. The authors also thank Pascal Mercere for his help during the experiments at Metrology and Tests Beamline at Synchrotron SOLEIL. The authors acknowledge the remarkable work achieved by Audrey Liard and her team at HORIBA Jobin Yvon in preparing the ion etched grating substrate.

References

1.

T. M. Mooney, T. Toellner, W. Sturhahn, E. E. Alp, and S. D. Shastri, Nucl. Instrum. Methods Phys. Res., Sect. A 347, 348 (1994). [CrossRef]

2.

Y. V. Shvyd’ko, S. Stoupin, A. Cunsolo, A. H. Said, and X. Huang, Nat. Phys. 6, 196 (2010). [CrossRef]

3.

D. Cocco, A. Bianco, B. Kaulich, F. Schaefers, M. Mertin, G. Reichardt, B. Nelles, and K. F. Heidemann, AIP Conf. Proc. 879, 497 (2007). [CrossRef]

4.

B. Lagarde, F. Sirotti, A. Taleb-Ibrahimi, C. Miron, and F. Polack, J. Phys. Conf. Ser. 425, 152022 (2013). [CrossRef]

5.

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, and W. R. Hunter, Appl. Opt. 36, 8206 (1997). [CrossRef]

6.

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, and W. R. Hunter, Appl. Opt. 22, 834 (1997).

7.

D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, C. H. Chang, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, L. Zipp, and H. A. Padmore, Opt. Lett. 2615, 35 (2010).

8.

D. L. Voronov, E. H. Anderson, R. Cambie, S. Cabrini, S. D. Dhuey, L. I. Goray, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Opt. Express 19, 6320 (2011). [CrossRef]

9.

D. L. Voronov, E. H. Anderson, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Opt. Lett. 37, 1628 (2012). [CrossRef]

10.

R. Benbalagh, J.-M. André, R. Barchewitz, Ph. Jonnard, G. Julié, L. Mollard, G. Rolland, C. Remond, Ph. Troussel, R. Marmoret, and E. O. Filatova, Nucl. Instrum. Methods Phys. Res. A 541, 590 (2005). [CrossRef]

11.

R. Benbalagh, J.-M. André, R. Barchewitz, M.-F. Ravet, A. Raynal, F. Delmotte, F. Bridou, G. Julié, A. Bosseboeuf, and Ph. Troussel, Nucl. Instrum. Methods Phys. Res. A 458, 650 (2001). [CrossRef]

12.

A. Bianco, G. Sostero, B. Nelles, K. F. Heidemann, and D. Cocco, Proc. SPIE 5918, 591810 (2005). [CrossRef]

13.

D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. A. Artemiev, and H. A. Padmore, Proc. SPIE 8848, 88480Q (2013). [CrossRef]

14.

F. Polack, M. Idir, E. Jourdain, and A. Liard-Cloup, “Two-dimensional diffraction network with alternating multilayer stacks and method for the production thereof and spectroscopic devices comprising said networks,” European patent applicationEP1700141 (July 17, 2005).

15.

F. Polack, B. Lagarde, M. Idir, A. Liard Cloup, and E. Jourdain, AIP Conf. Proc. 879, 639 (2007). [CrossRef]

16.

F. Polack, B. Lagarde, M. Idir, A. Liard-Cloup, E. Jourdain, and M. Roulliay, AIP Conf. Proc. 879, 489 (2007). [CrossRef]

17.

A. Patteli, J. Ravagnana, V. Rigatoa, G. Salmasoa, D. Silvestrinia, E. Bontempic, and L. E. Deperoc, Appl. Surf. Sci. 238, 262 (2004). [CrossRef]

18.

H. Maury, P. Jonnard, J.-M. André, J. Gautier, M. Roulliay, F. Bridou, F. Delmotte, M.-F. Ravet-Krill, A. Jérome, and P. Holliger, Thin Solid Films 514, 278 (2006). [CrossRef]

19.

F. Choueikani, F. Bridou, B. Lagarde, E. Meltchakov, F. Polack, P. Mercere, and F. Delmotte, Appl. Phys. A 111, 191 (2013). [CrossRef]

20.

A. Mirone, E. Delcamp, M. Idir, G. Cauchon, F. Polack, P. Dhez, and C. Bizeuil, Appl. Opt. 37, 5816 (1998). [CrossRef]

21.

S. Ducourtieux and B. Poyet, Meas. Sci. Technol. 22, 094010 (2011). [CrossRef]

22.

J. Gautier, F. Delmotte, F. Bridou, M. F. Ravet, F. Varniere, M. Rouilliay, A. Jerome, and I. Vickridge, Appl. Phys. A 88, 719 (2007). [CrossRef]

23.

M. Idir, P. Mercere, T. Moreno, A. Delmotte, P. Da Silva, and M. H. Modi, AIP Conf. Proc. 1234, 485 (2009).

24.

M. Krumrey and G. Ulm, Nucl. Instrum. Methods Phys. Res. A 467-468, 1175 (2001). [CrossRef]

25.

P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu, F. Deschamps, T. Moreno, F. Polack, B. Lagarde, J.-P. Daguerre, F. Marteau, F. Scheurer, L. Joly, J. P. Kappler, and B. Mulle, Rev. Sci. Instrum. 85, 013106 (2014). [CrossRef]

OCIS Codes
(160.4760) Materials : Optical properties
(230.4170) Optical devices : Multilayers
(340.6720) X-ray optics : Synchrotron radiation
(340.7470) X-ray optics : X-ray mirrors
(260.6048) Physical optics : Soft x-rays

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 31, 2014
Revised Manuscript: March 1, 2014
Manuscript Accepted: March 2, 2014
Published: March 31, 2014

Citation
Fadi Choueikani, Bruno Lagarde, Franck Delmotte, Michael Krumrey, Françoise Bridou, Muriel Thomasset, Evgueni Meltchakov, and François Polack, "High-efficiency B4C/Mo2C alternate multilayer grating for monochromators in the photon energy range from 0.7 to 3.4  keV," Opt. Lett. 39, 2141-2144 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-7-2141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. M. Mooney, T. Toellner, W. Sturhahn, E. E. Alp, and S. D. Shastri, Nucl. Instrum. Methods Phys. Res., Sect. A 347, 348 (1994). [CrossRef]
  2. Y. V. Shvyd’ko, S. Stoupin, A. Cunsolo, A. H. Said, and X. Huang, Nat. Phys. 6, 196 (2010). [CrossRef]
  3. D. Cocco, A. Bianco, B. Kaulich, F. Schaefers, M. Mertin, G. Reichardt, B. Nelles, and K. F. Heidemann, AIP Conf. Proc. 879, 497 (2007). [CrossRef]
  4. B. Lagarde, F. Sirotti, A. Taleb-Ibrahimi, C. Miron, and F. Polack, J. Phys. Conf. Ser. 425, 152022 (2013). [CrossRef]
  5. J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, and W. R. Hunter, Appl. Opt. 36, 8206 (1997). [CrossRef]
  6. M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, and W. R. Hunter, Appl. Opt. 22, 834 (1997).
  7. D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, C. H. Chang, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, L. Zipp, and H. A. Padmore, Opt. Lett. 2615, 35 (2010).
  8. D. L. Voronov, E. H. Anderson, R. Cambie, S. Cabrini, S. D. Dhuey, L. I. Goray, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Opt. Express 19, 6320 (2011). [CrossRef]
  9. D. L. Voronov, E. H. Anderson, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Opt. Lett. 37, 1628 (2012). [CrossRef]
  10. R. Benbalagh, J.-M. André, R. Barchewitz, Ph. Jonnard, G. Julié, L. Mollard, G. Rolland, C. Remond, Ph. Troussel, R. Marmoret, and E. O. Filatova, Nucl. Instrum. Methods Phys. Res. A 541, 590 (2005). [CrossRef]
  11. R. Benbalagh, J.-M. André, R. Barchewitz, M.-F. Ravet, A. Raynal, F. Delmotte, F. Bridou, G. Julié, A. Bosseboeuf, and Ph. Troussel, Nucl. Instrum. Methods Phys. Res. A 458, 650 (2001). [CrossRef]
  12. A. Bianco, G. Sostero, B. Nelles, K. F. Heidemann, and D. Cocco, Proc. SPIE 5918, 591810 (2005). [CrossRef]
  13. D. L. Voronov, S. Diez, P. Lum, S. A. Hidalgo, T. Warwick, N. A. Artemiev, and H. A. Padmore, Proc. SPIE 8848, 88480Q (2013). [CrossRef]
  14. F. Polack, M. Idir, E. Jourdain, and A. Liard-Cloup, “Two-dimensional diffraction network with alternating multilayer stacks and method for the production thereof and spectroscopic devices comprising said networks,” European patent applicationEP1700141 (July 17, 2005).
  15. F. Polack, B. Lagarde, M. Idir, A. Liard Cloup, and E. Jourdain, AIP Conf. Proc. 879, 639 (2007). [CrossRef]
  16. F. Polack, B. Lagarde, M. Idir, A. Liard-Cloup, E. Jourdain, and M. Roulliay, AIP Conf. Proc. 879, 489 (2007). [CrossRef]
  17. A. Patteli, J. Ravagnana, V. Rigatoa, G. Salmasoa, D. Silvestrinia, E. Bontempic, and L. E. Deperoc, Appl. Surf. Sci. 238, 262 (2004). [CrossRef]
  18. H. Maury, P. Jonnard, J.-M. André, J. Gautier, M. Roulliay, F. Bridou, F. Delmotte, M.-F. Ravet-Krill, A. Jérome, and P. Holliger, Thin Solid Films 514, 278 (2006). [CrossRef]
  19. F. Choueikani, F. Bridou, B. Lagarde, E. Meltchakov, F. Polack, P. Mercere, and F. Delmotte, Appl. Phys. A 111, 191 (2013). [CrossRef]
  20. A. Mirone, E. Delcamp, M. Idir, G. Cauchon, F. Polack, P. Dhez, and C. Bizeuil, Appl. Opt. 37, 5816 (1998). [CrossRef]
  21. S. Ducourtieux and B. Poyet, Meas. Sci. Technol. 22, 094010 (2011). [CrossRef]
  22. J. Gautier, F. Delmotte, F. Bridou, M. F. Ravet, F. Varniere, M. Rouilliay, A. Jerome, and I. Vickridge, Appl. Phys. A 88, 719 (2007). [CrossRef]
  23. M. Idir, P. Mercere, T. Moreno, A. Delmotte, P. Da Silva, and M. H. Modi, AIP Conf. Proc. 1234, 485 (2009).
  24. M. Krumrey and G. Ulm, Nucl. Instrum. Methods Phys. Res. A 467-468, 1175 (2001). [CrossRef]
  25. P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu, F. Deschamps, T. Moreno, F. Polack, B. Lagarde, J.-P. Daguerre, F. Marteau, F. Scheurer, L. Joly, J. P. Kappler, and B. Mulle, Rev. Sci. Instrum. 85, 013106 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited