OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 1 — May. 1, 2011
  • pp: 101–107

Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB)

U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 1, pp. 101-107 (2011)
http://dx.doi.org/10.1364/OME.1.000101


View Full Text Article

Enhanced HTML    Acrobat PDF (1584 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasma-etched nanostructures are useful to provide antireflective properties to glass and plastic substrates. Organic compounds were deposited on glass substrates by thermal evaporation and etched by plasma emitted from an ion plasma source. A self-organized formation of surface structures takes place during etching of a layer of 1,3,5-Triazine-2,4,6-triamine (melamine). On the other hand, the surface of N,N´-di(1-naphthyl)-N,N´-diphenyl benzidine (NPB) remained smooth after etching. In this case, the structure formation was initiated by depositing a thin oxide layer on to the organic layer prior to the etching step. For both materials the etching process can be tailored to achieve antireflective properties over a desired wavelength range.

© 2011 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(310.1210) Thin films : Antireflection coatings
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: January 26, 2011
Revised Manuscript: February 16, 2011
Manuscript Accepted: February 17, 2011
Published: April 22, 2011

Citation
U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser, "Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB)," Opt. Mater. Express 1, 101-107 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-1-101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Macleod, Thin-Film Optical Filters, 3rd edition (Institute of Physics Publishing, 2001).
  2. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002). [CrossRef] [PubMed]
  3. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973). [CrossRef]
  4. M. Chen, H. C. Chang, A. S. P. Chang, S.-Y. Lin, J.-Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007). [CrossRef] [PubMed]
  5. M. Minot, “The angular reflectance of single-layer gradient refractive-index films,” J. Opt. Soc. Am. 67(8), 1046–1050 (1977). [CrossRef]
  6. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999). [CrossRef]
  7. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings, ” Science 283(5401), 520–522 (1999). [CrossRef] [PubMed]
  8. G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000). [CrossRef]
  9. A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 20, 58–61 (2004).
  10. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15(20), 13108–13113 (2007). [CrossRef] [PubMed]
  11. M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009). [CrossRef]
  12. S. Jahromi and U. Moosheimer, “Oxygen barrier coatings based on supramolecular assembly of melamine,” Macromolecules 33(20), 7582–7587 (2000). [CrossRef]
  13. S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electrolumi- nescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996). [CrossRef]
  14. S. Pongratz and A. Zöller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992). [CrossRef]
  15. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008). [CrossRef] [PubMed]
  16. OptiChar software, http://www.optilayer.com
  17. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited